T

FSC)

(Prepared under. Confrccf No. Fl962
Ccmbrldge, Mcsscchuseffs 02l38)

ESD-TR-71-345

QUEUEING NETWORK MODELS OF MULTIPROGRAMMING

Jeffrey P. Buzen

August (971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

P

Approved for public release;
distribution unlimited.

(Prepared under Contract No, F19628-70-C-0217 by Harvard University,
Cambridge, Massachusetts 02(38.)

FOREWORD

This report was prepared in support of Project 2801, Task
280102 by Harvard University, Cambridge, Massachusetts under
Contract F19628-70-C-0217, monitored by Dr. John B. Goodenough,
ESD/MCDT-1, and was submitted August 1971.

Thls technical report has been reviewed and 1s approved.

b &

‘OHN B. GOODENOUGH
Project Officer

i1

ABSTRACT

A model is developed which represents the behavior of
multiprogrammed computer systems in terms of a network of
interdependent queues. This model, which is known as the
central server model of multiprogramming, is first analyzed
mathematically and then applied to three problems 1in
operating system design. These are: the optimal choice of
buffer size for tape-like devices; the optimal allocation of
processing requests among a set of functionally equivalent
peripheral processors such as disks and drums; the optimal

selection of the degree of multiprogramming in demand paging
systems.

A serles of computational algorithms are developed to
supplement the analytic work. These algorithms can be used
to obtain the marginal distributions and expected queue
lengths for a large class of queueing network models.

111

PREFACE

I am deeply indebted to my advisor Dr. Ugo O. Gagliardi
for introducing me to the subject of queueing theory and for
encouraging me to work in this area. 1In addition, Dr. Gag-
liardi's clear vision of the underlying nature of sclientific
research has provided a sharp focus of expectatlion throughout
the course of this thesis.

I would also like to express my gratitude to the other
members of my committee, Professors T.E. Cheatham, Jr., A.G.
Oettinger and W.A. Woods, for the time they have lnvested
in reading this thesis and for their pertinent comments.
R.M, Klerr's extremely careful and thoughtful reading of an
early draft of Chapter 4 is also appreciated. Finally, I
would like to point out that a number of ideas in Chapter 7
were generously contributed by C.G. Moore and S.R. Kimbleton
of the University of Michligan and by F. Baskett of the
University of Texas. These contributions are explicitly
acknowledged in footnotes and in the body of the text.

The work leading to this thesls was supported in part
by the National Sclence Foundation through the Traineeship
program. Support for the thesls 1ltself was provided by the
Veterans Administration under Chapter 34, Title 38 of the
G.I. Bill and by the Electronic Systems Division, L.G.
Hanscom Fleld, Bedford, Massachusetts under Contract No.
F-19628-70~C-0217.

My wife Judy deserves special recognition for her unique
sensitivity and consistent support during the preparation of

this thesls. Her many intangible yet highly significant
contributions are sincerely appreciated.

JEFFREY BUZEN

Watertown, Massachusetts
May, 1971

iv

TABLE OF CONTENTS

POREWORD c.ceeceocococccsssscssnsscsscncscncssosscssanaanss 11
ABSTRACT cccececoccvcocccsoscccncssssssscsscsssscrassonass 111
PREFACE coececocceacosccotcccsccsscsconssessssnsssscssnss 1V
LIST OF FIGURES ..ccececoeccoccccococscsccscscsscsctsncsss 11X

LIST OF TABLES LXK BN B BE BN BN BE IR BCEE BN BE R B X R B BCEY B BE B EE B BE RN B B B NE K B B B B B B N I

SYNOPSIS ® 0 0 00 0 0 0000t 000 0P o000 P PO 0O PO P00 0000 xl

CHAPTER 1 INTRODUCTION
The Need for Queueing Network Models ...cccce00ccce 1

orga’]lzatlonal RemarkS 0 0 0 000 60 00000 et P NP 0 u

CHAPTER 2 SURVEY OF THE APPLICATIONS OF QUEUEING THEORY

TO COMPUTERS

Essentials of Queueing TheoTrY c.cecescccccsccsccccs 6

Quantum Controlled Service Disciplines ceeceeccese 12
Scheduling Algorithms ..cceevcesscesssscscces 14
Quantum TYPES ccocevcecvcosssossscsssscssssosss 20
Overhead ASSUMPLIONS ccececcsocssssossoncsnces 23
ATTIVAl ProCesSS8eS ..cccsccccsscsssescscsnsece 24
Service Time Distributions .ccecesecovcocecss 27
Sumnmary and Evaluation cec.ececesecccscoscccse 29

Conventional Priority Disciplines .ceecececccceces 37

Rotating Storage Service Disciplines ...e..eccoeee. Ul

Capacity Problems .scecssecoceccscccscsscscsccsncse 49

Network Models cecececvccocccsncsossososcccoossscsocosco 54

CHAPTER 3 SUHVEY OF QUEUEING NETWOHK RESEARCH

Barly DevelopletiBs « s s e on o556 e i on 554 T s s 63
Output DLErIBNEEons . «vss o5 wes s s o onssns o 59 5 63
Aralysis of Specific Vetwork Types €4
Limitations on JetWwork Capacitycccce.. 67

General Vetwork “odels D T Ty e s 70
The Work of J.R: JACKSON «oswisvawes oo v pmawsss 70
The Work of W.J. Gordon and G.F. Jewell 73

CHAPTER 4 INTRODUCTION TO THE CENTRAL SERVER MODEL

Specification of the Vodel & WS BN B Ee swaw 76
Individual Program Behaviorecceceeeecses 76
System Behaviorcieeeevenencns Shs shshametoperonelone /AT
Behavior PAranebers .. .wswswsaesyes T vy DG

Summary Description of the odel .ee.ceeeeeee. 86

Bledentary PBOperties .o uentaanonads®es s e s i os 89
T EOAROTHON «ie a0 om0 siwne suare waine i R AR e B 89
Distribution of Processing Hequests 89
Distribution of Total Processing Time 93

Analytic Expressions 3 e T s Tahe T e et ey w ek (e 100
Derivation of the Steady State Distribution .. 100

Processor Utilization @ Gl Pvor i W feidsl et 103
Conservation Laws ..ceeeeececces s 104
Queue Lengths E s alEdEe L T 108
System PerformanCecccceeeeeccosscecccsccas 112

Bottlenecks s sceosneas ST O IR (e, G

Computational Formulas S8 e
Basic Iterative Formula

EXEENSNONS it sists at s oheiel el wiiein foile ot

CHAFTER 6 APFLICATIONS

IREEoAUCENON: i) sere s me o) o fomss oiesisko s ne — v y :
Buffer Size Determination e R . 1T
Problem DefAinitlon .. isiecises oseessesp s e B

Aelation Between Buffer Size
and Network Parameters ..

lLon=Integral Values of N

Optimization Equations

Analysis oo it it TR RS e e s

Peripheral Processor Utilization ...

Problem DeELINIEYON . o i arom sia cueiieioe o oo re smeis o ol o

Optimization Equations

Discussion of Results

vathematical Analysis

Page Traffic Balancingcccceeee

Froblem Definition ...eccceee..

Farametric Specificatlion
of Page Traffic Behavior

Relation Between Fage Trafflic

Behavior and Network Farameters

Optimization Equations

Analy518 © ® 0 6 8 ¢ @ 80 00 0 00 00 00 0t S0 s 0o

vii

113
116
116
123

134
135
135

136
138
139
142
152
152
152
133
158
165
165

166

170
172
174

CHAPTER 7 EXTENSIONS

Introduction. ..ceeecececwaesn

New Processor Types

® & ® 0 000 0000 0000 00 0 0o

“ultiple Processors and Channels

Dedicated Peripheral Frocessors

Queue Dependent ProceSSOrS .c.cececscecs

Non=-Exponential Dedicated
FPeripheral Processors o¥s Ty Ml lemairone

Hyperexponential Central Processors

with Processor Sharingc.ccceeeee

Variations in the Degree of “Multiprogramming

A Specialized Time-Sharing Model

An Open Network Model ...cceocececcscecss

CHAPTER 8 THE “ODEL IN PERSPECTIVE

Relation to Other Work ..

Introduction

The Work of C.G.

Moore ...seus GBS [hams s) Fae 5

The Work of S.R. Arora and A.Gallo

The WoTk of Ha "TAaNAKE % avw bie wie e 6 o aussieishe @

New Yaterial

oooooooooooooo oo o0 00

Suggestions for Further Research .cecceccececcoccnss

APFENDIX A THE EXPONENTIAL DISTRIBUTION

AFPPENDIX B A SOLUTION TECHNIQUE FOR
"IARKOV IA:.\] QUEUEI\]G I“ ET:'JOliKS ® o000

BIBLIOGRAPHY

viii

178
179
173
180
181

183

189
179
493
19%

203
203
204
205
207
207
209

213

218
229

Figure

2=-1
2=2
2~

3-1
3-2

3=l
3-5

bt
o2

6-1

6=2
6-3

7l
7=2

7=l
7=5
7-6

LIST OF FIGURES
Title

The Hound Hobin Scheduling Algorithm
The Foreground Background Scheduling Algorithm
Queueing ‘JTodels of Quantum Controlled Service
Disciplines
Two Queues 1in Series
Farallel Servers
Terminal Feedback
Internal lFeedback
Arbitrarily Connected Queueing Network
Cyclic Queue
Program Behavior
Memory Partition Behavior
Central Server “Model of Multiprogramming
Effect of Buffer Size Variation on Relative
Ferformance

Page Traffic Behavior

Lffect of Page Replacement Algorithm and Speed of

Page Transfer Processor on Relatlve Performance

Hyperexponential Dedicated Peripheral Processors

Erlang Sum Dedlcated Perlipheral Processors
Hyperexponential CPU with Processor Sharing
Specialized Time-Sharing Model

Open Network Model

Equivalent Closed Network “odel

ix

Page
16
16

30=31
64
65
66
66
67
68
78
78
87

151
169

176
184
186
191
185
198
202

LIST OF TABLES
Table Title Fage
2-1 Research and Survey Papers Deallng with the Analy-
sis of Quantum Controlled Service Disciplines 32-33

b1 Relative Frequency with which Frograms Completing

CPU Processing Requests Select Various Paths 83
b2 Derived Results Concerning Program Behavior 98
5-1 Algorithm Operation 119
52 Storage Allocation 121

5-3 Algorithm Operation for Queue Dependent Servers 128
6-1 Optimal Buffer Size 145
6-2 System Performance as a Function of Buffer Size

148-149
6-3 System Characteristics at Polints of Optimal

Performance 156

SYNOPSIS

The major portion of this thesis 1s devoted to the
development, analysis and application of the central server
model of multiprogramming. Thils model represents the overall
behavior of large scale multiprogramming systems in terms of
a network of queues. Each processing element and active pro-
gram in the system beilng modeled is explicitly represented.
In addition, the effect on overall system performance of
random varlability in individual program behavior 1is implic-
itly taken into account.

The mathematical treatment of the central server model
begins with a derivation of the steady state distribution.
The properties of this distribution are then examined in a
series of informal theorems and corollaries. Following this
a number of highly efficient computational algorithms are
developed for numerically evaluating the steady state distri-
bution in specific instances. These algorithms, which are
applicable to a wide class of queueing networks, make it
possible to easily carry out computations which would other-
wise be near or in some cases even beyond the limits of
current technology. The value of these algorithms thus ex-
tends well beyond the context of the thesis 1itself.

In addition to these analytic and computational results,
the central server model is also applied to three specific

problems in computer systems analysis. These problems

xi

involve the optimal specification of buffer size for tape-~
like devices, the optimal allocation of processing requests
among a set of functionally equivalent peripheral processors
such as disks and drums, and the optimal allocation of main
memory in systems employing demand paging.

All three problems generated unanticipated results. 1In
the first case it was discovered that, with the initial over-
head per transfer held constant, optimal buffer slze decreases
as the transfer rate of the assocliated peripheral processor
increases. Analysis of the second problei revealed that
optimal performance is attained when the fastest processor
1s receiving more than its proportional share of processing
requests and 1s in effect creating a system bottleneck.
Pinally i1t was shown in the third problem that in certain
cases it 1s more important to have efficient page replacement
algorithms in systems with fast page transfer processors
than it is in systems with slow page transfer processors.

The contents of each chapter of this thesis may be

briefly summarized as follows:

Chapter 1 presents a discussion of the merits of queueing

network models and a guide to the remainder of the thesis.

Chapter 2 introduces some basic queueing theoretic notions
and then reviews a total of fifty-five papers concerned
with the application of queueirg theory to computer systems

analysis.

xii

Chapter 3 brlefly traces the development of analytic methods

and models in the fleld of queueing network research.

Chapter 4 provides the basic motivation for the central ser-
ver model and also examines some of the model's elementary

properties.

Chapter 5 presents a derivation of the steady state distribu-
tion for the central server model and an examination of the

analytic and computational aspects of this distribution.

Chapter 6 explores the applications of the central server
model to problems of buffer sgsize determination, peripheral

processor utilization and page traffic balancing.

Chapter 7 develops a number of extensions to the basic
central server model which make 1t possible to represent

more general classes of systems.

Chapter 8 examines the relationship between thls thesis and
previous research. In addition a number of problems are

presented for future consideratlon.

Appendix A discusses the nature of the exponential distribu-

tion with emphasis on the so-called 'memoryless' property.

Appendix B provides a detailled explanation of the powerful
but 1little known solution technique which was used in Chapter

5 to obtain the steady state distribution for the central

server model.

xiii

CHAPTER 1: INTHODUCTION

THE NEED FOR QUEUEING NETWORK MODELS

Large scale multiprogramming systems are typically com-
posed of a number of individual processing elements such as
computational processors, device controllers, data channels
and so forth. These processing elements normally operate in
parallel with one another subject to constraints generated
by the programs which run on the system. That 1is, even
though the processing elements which make up a multipro-
gramming system may be capable of fully parallel operation,
the degree of parallellism which the system actually attains
1s always limited by the sequential nature of the processing
requests that individual programs generate. Thus any model
of a multiprogramming system must incorporate both parallel
processing capabilities and sequential processing constraints.

Random variability also has a significant effect on the
performance of multiprogramming systems. Essentially, this
factor creates the possibility of queueing delays even though
the average interval between arrivals at a system processor
may be greater than the average service time per processing
request. wueueing delays created by random variability work
in conjunction with sequential processing constraints to
further reduce the degree of parallelism in multiprogramming

systems. The effect of this factor may be quite significant.

For example, in the case in which all active programs have
requests pending for the same rrocessing element at the same
time, parallelism may entirely disappear. Hence any realis-
tic multiprogramming model must include random variability
along with parallel processing capabilities and sequential
processing constraints.

One of the primary purposes of this thesls is to demon-
strate that all three of these factors can be represented
quite naturally within the framework of a queueing network
model. In such a model each server in the network corresponds
to an individual processing element, the path that a cus-
tomer follows while moving through the network corresponds
to the sequence of processing requests generated by a partic-
ular program, and the random varlablility 1in service times
and customer movement corresponds to the random variability
in the actual system. In addition the number of customers
in the network at any time clearly corresponds to the degree
of multiprogramming of the system belng represented.

Queueing network models may be addressed to a number of
problems in computer systems analysis. For example, it is
possible to study the effects of various modifications in
system hardware by utilizing the correspondence between
actual processor speed and network service time or the corre-
spondence between main memory size and number of customers
in the network. In a somewhat different context, the corre-

spondence between program behavlior and the paths that cus-

tomers follow as they move through the network can be used to
study problems such as the optimization of program structure
with respect to system hardware. Finally, 1t 1s possible to
study more complex problems such as the optimal allocation of
main memory in systems with demand paging. Froblems of this
type involve the interaction of several system components
and cannot be adequately treated by simpler models which take
only one processing element into account.

Despite the obvious advantages of queueing network
models, Vvery few analyses of such models have appeared in
the 1literature. Thls 1s no doubt related to the mathematical
difficulties assoclated with the general analytic treatment
of models of this type. However, in many specific cases of
interest - including those considered in thls thesis - it is
possible to slgnificantly reduce the mathematical complexity
of the problem by applylng a powerful solution technique
which was origlinally developed by Jackson (48) in 1963 and
then independently discovered by Gordon and Newell (41)
shortly thereafter. Since this solution technique 1is not
widely known within the field of computer systems analysis,
its most significant aspects have been reproduced in Appendix
B. It is hoped that the increased avallabllity of this tech-
nique together with the examples and supplementary numerical
algorithms developed in this thesis will generate additional
interest in thils area and will ultimately lead to a series

of highly useful and revealing queuelng network models.

ORGANIZATIONAL REMARKS

A brief summary of the contents of each chapter of this
thesis is provided in the Synopsis. It should be apparent
from thls summary that Chapters 4, 5 and 6 present the bulk
of the new material in the thesls. These chapters are en-
tirely self-contained and should be readily understandable
to anyone familiar with queueing theory and operating systenm
fundamentals.

Readers more interested in practical applications may
wish to restrict their attention to the section of Chapter 4
which deals with specification of the model, the section of
Chapter 5 which deals with system performance, and the three
examples in Chapter 6. The extenslons discussed in Chapter 7
and the suggestions for further research presented in Chap-
ter 8 should also be of interest to this group.

The more mathematically inclined readers will probably
wish to read all of Chapters 4 and 5. However, the only
application of real mathematical interest in Chapter 6 is
the one dealing with peripheral processor utilization. In
addition, any mathematically inclined reader not already
familiar with the work of Jackson (48) and Gordon and Newell
(41) should find Appendix B extremely valuable. The work

of Jackson and Gordon and ~Newell is also discussed in more

qualitative terms in Chapter 3.

The survey presented in Chapter 2 is self-contained and
should provide a helpful introduction to students and other
individuals entering this field of research. In addition,
Chapters 3 and 8 contain more specialized surveys. All three
of these chapters contain discussions of unsolved and poten-

tially significant research problems.

CHAPTER 2: SURVEY OF THE APPLICATIONS OF
QUEUEING THEORY TO COMFPUTERS

ESSENTIALS OF QUEUEING THEORY

Queueing theory may be thought of as a collection of
analytic techniques and mathematical results all related to
the analysis of a particular abstract process. Essentially
this process is one in which customers arrive at some service
facility, present that facility with requests for service,
and then leave the facility after their individual requests
have been satisfied. 1In this general setting queueing theory
deals with such questions as the number of customers at the
facility at any time, the total amount of time required to
process individual customers through the facility, and the
nature of the periods during which the facility is continu-
ously busy serving customers.

dandom variability is one of the essential distinguish-
ing features of all queueing systems. Basically, there are
two ways such variability can enter: either in the time
intervals between the arrival of successive customers, or in
the amount of service that individual customers request.

In most queueing systems both these factors are assumed to
be non-constant random variables. However, there are some
cases of interest in which one of these factors 1is constant.
Systems in which both factors are constant or cycle deter-

ministically through a given set of values are not tradi-

tionally regarded as falling within the realm of queueing
theory since a different set of mathematical techniques 1is
required for their analysis.

In the standard terminology of queueing theory, the
length of the intervals between the arrival of successive
customers is determined by the arrival process and the amount
of service that each customer requests is determined by the
service time distribution. If the inter-arrival intervals
are independent of each other and exponentlally distributed
(see Appendix A), the arrival process is known as a Poisson
process. Thils process 1s of fundamental lmportance in queue-
ing theory because of its mathematical simplicity and its
reasonably close correspondence to many physical situations.
If the service time distribution 1is also exponential, further
simplifications are introduced, but it is not always neces-
sary to make this additional assumption in order to obtain
significant results.

A queueing system 1s characterized by specifylng an
arrival process, a service time distribution, and a third
component known as a service discipline. This third com-
ponent specifies the manner in which service 1is dispensed to
customers who are present at the service facility. For
example, customers may be served on a first come first served
basis, or in accordance with an externally assligned set of
priorities, or on a rotating (i.e., round robin) basis.

A number of service disciplines which are important in

the analysis of computer systems will be discussed more
thoroughly in later sectlons of this chapter.

Once a queuelng system has been specified by identify-
ing its three primary components, the analysis of the system
can begin. As already mentioned, the questions of interest
typically concern the number of customers at the facility
at any given time, the total amount of time necessary to
process particular customers through the system, and the
length of the periods during which the service facility is
continuously busy serving customers.

Because random factors operate in all queueing systems,
the questions of interest can only be ansgswered in terms of
random variables or expected values of random variables. As
an example of this type of solution, suppose that an initial
reference point is established and designated as time zero,
and let time t denote the polnt in time that is t seconds
after time zero. Assuming that the number of customers in
the gystem at time zero is known and that the arrival proc-
ess, the service time distributlion and the service disci-
pline are all specified, it is then conceptually possible
to calculate Pn(t) - the probability that the number of
customers in the system at time t 1is equal ton - for
each value of n (i.e., for n=0,1,2, ...).

In most queuelng systems of interest the value of Pn(t)

tends to stabilize after an initial period of fluctuation.

That 1s, the probability distribution characterizing the
numnber of customers in the system eventually becomes invari-
ant with respect to time. Gystems which stablilize in this
manner are said to become stationary, and the stable distri-
butions which are eventually attailned are known as steady
state, equllibrium or stationary distributions.

In ergodic systems the final steady state distribution
is independent of the state the system starts in at time
zero. Thus, a steady state distribution can be used to
characterize an ergodic queueing system when all that is
known is the arrival process, the service time distribution,
the service discipline, and the fact that the system has
been in operation for a relatively long period of time.

All the research papers to be discussed in this chapter
and the next are directed towards obtaining steady state
solutions for ergodic queueing systems. However, it should
be noted that 1t 1s sometimes possible to obtain time depen-
dent solutions which, in effect, describe the behavior of
systems as they progress from some initial state to the
equilibrium state. Because of their mathematical complexity
and speclalized nature, the solutions obtained for the time
dependent case have never been directly applied to the analy-
sis of computer systems. Takacs (78) presents a comprehen-
sive account of the known results in thls area.

Before closing this section it would be worthwhile to

mention a few modifications of the basic queueing process
which are of interest in certain situations. The first of
these concerns the number of servers which make up the
service facility. The assumption here is that each server
1s capable of providing service to only one customer at a
time. Thus, if there are N customers present at a service
facility made up of S servers and N is greater than S, then
S customers will be receiving service and N-S customers will
be waiting. If N is less than or equal to S, all N customers
will be receiving service and no customers will be waiting.
Most applications of queueing theory to computers assume S 1is
equal to one, but there are examples such as multiprocessing
systems for which some other value of S would be appropriate.

It is important to distinguish the case of multiple
servers within a single service facility from the case of
queueing networks. In queueing networks there are a number
of different service facilities organized so that customers
leaving one may proceed to another. Thus, separate queues
build up at each service facility in the network. Network
parameters include the number of servers present at each
facility and the probability that a customer leaving a par-
ticular facility will proceed to another specified facility.
A number of papers dealing with the theory of queueing net-
works are discussed in Chapter 3.

Now that the fundamental aspects of queueing theory

have been introduced, it 1is possible to examine some of the

10

applications of this branch of mathematics to computer sys-
tems analysis. Each of the remalnling sections of this chap-

ter will focus on one particular area of application.

11

QUANTUM CONTROLLED SERVICE DISCIFLINES

In interactive time-sharing systems it 1s usually con-
sidered undesirable to keep a short job walting simply
because a substantially longer job has entered the system
sometime before 1it. As a result such systems do not normally
process Jobs strictly on a first come first served (FCFS)
basis. Instead they employ scheduling algorithms which
attempt to insure that relatively short Jjobs do not have to
wait in the system for excessively long periods of time.

Scheduling algorithms which provide short jobs with this
type of preferential treatment have been the subject of
extensive analysis over the past few years. Since most of
the algorithms studled belong to the class of quantum con-
trolled service disciplines, it is useful to consider the
structure of this class as a whole before examining the
behavior of specific algorithms.

The essential feature which characterizes quantum con-
trolled service disciplines is that each Job is permitted to
run on the system (i.e., the CPU) for a certain period of
time known as a quantum. If a Jjob terminates before its
quantum has expired, it leaves the system immediately.
Otherwise, it returns to the queue of waiting Jjobs when
its quantum expires. In either case, another job 1s then
immediately selected from the queue of waiting Jobs and

granted the next quantum of CFU processing. The algorithm

12

continues to operate in thls manner so long as there are any
Jobs in the system walting for service.

An important feature of gquantum controlled service dis-
ciplines, in addition to the relative ease with which they
can be lmplemented, 1s the fact that they can provide prefer-
entlal treatment to short jobs even though they presume no
a prioril knowledge of the amount of processing that incoming
Jobs require. As will be demonstrated in the next section,
i1t 1s theoretically possible to devlise service disciplines
which are superior to the quantum controlled type if such
a priori information 1is available. However, because such
information is difficult and oftentimes impossible to reli-
ably obtaln, designers of interactive time-sharing systems
will probably never entirely discard service disciplines of
the quantum controlled type.

The mathematical analysis of quantum controlled service
disciplines has generated a surprisingly large number of
publications. 1In order to categorize these publicatlions and
present them in a relatively coherent manner, the following
strategy has been adopted. First, a set of five components
which are present in all queueing theoretic models of quantum
controlled service disciplines will be identified. Each
component will be considered individually, and all the sub-
categories which have been studied in the literature will
be discussed. Then each paper will be classified by specify-

ing the particular sub-category of each component that was

13

used to construct the model examined in the paper. The final
outcome of thls procedure is presented in Table 2-1 (pp. 32-
33) for a total of twenty-nine papers which were published
in the period 1964-1970.

The filve components used to make this classification
are the scheduling algorithm, the quantum type, the service
time distribution, the arrival process and the overhead
assumption. These components along with their associated
sub-categories are represented schematically in Figure 2-3
(pp. 30-31). The selection of these components was motivated
by earlier survey papers prepared by Coffman (18), Estrin
and Kleinrock (31), and McKinney (61), and so the material
presented here may be regarded as a natural extension of

this earlier work.

Scheduling Algorithms

As indicated in Figure 2-3, only two components are
required to specify a quantum controlled service disci-
pline: the scheduling algorithm, which determines the order
in which Jjobs are selected for service at the end of each
quantum, and the quantum type, which determines the amount
of processing time allocated to a Jjob once it has been
selected for a quantum of service.

Essentilally only two classes of scheduling algorithms
have been considered in the literature, round robin (RR) and
foreground background (FB). Under the RR discipline jobs
entering the system form a single queue in order of arrival.

14

Each time a new Jjob 1s to be selected for a quantum of pro-
cessing, 1t 1s taken from the head of the queue. If a job

requires additional processing at the end of a quantum, it

i1s placed at the tall of the queue as if it were a new job.
Thus, before a job can receive an additional quantum, each

Job which was present in the system at the end of its pre-

vious quantum must first receive a quantum of 1its own. The
operation of such a scheduling algorithm is depicted sche-

matically in Figure 2-1.

Under the FB discipline, jobs entering the system also
form a single queue in order of arrival. This queue, which
is known as the foreground gqueue, is served on a FCFS basis
with each job being granted one quantum of processing. If
a Job requires additional processing at the end of its quan-
tum, it does not return to the tail of the foreground queue
as in the RR algorithm but instead returns to the tail of the
first background queue. After a wailt in the first background
queue, a jJob receilves its second quantum of processing and
then proceeds to the third background queue, then the fourth,
and so on until i1ts processing requirement is finally satis-
fied.

An important feature of FB algorithms is that each time
a new Job is to be selected for a quantum of processing, it
is taken from the head of the highest priority non-empty
queue. In this context the foreground queue has highest

priority, the first background queue has second highest

15

JOBS REQUIRING ADDITIONAL
QUANTA OF SERVICE

ARRIVING H 1 COMPLETED
s quEtE_+{ceu) s SORLE

Figure 2-1
The Round Robin (RR) Scheduling Algorithm

JOBS REQUIRING ADDITIONAL
QUANTA OF SERVICE

|—>{th BACKGROUND QUEUE §

L4
L
L]

—>{ 2nd BACKGROUND QUEUE |-

L—3{ 1st BACKGROUND QUEUE I

A\

ARRIVING o | COMPLETED
i > FOREGROUND QUEUE MPU —> COYPLE

Figure 2-2

The Foreground Background (FB) Scheduling Algorithm

16

priority, and in general the nEh background queue has n+1§£

highest priority. Within the foreground level and each back-
ground level Jjobs are queued in the order in which they
arrive at that particular level and served on a I'CFS basis.
The entire process is illustrated in Figure 2-2.

To complete the description of the FB algorithm it is
necessary to discuss the disposition of jobs which complete
a quantum of service on the lowest priority background level
but still require additional processing. One falrly common
procedure is to continue to give such jobs additional quanta
until they finally run to completion. If in the meantime a
new Jjob enters the system, that Jjob will begin to receive
service as soon as the Job being served comes to the end of
its next quantum since the new Job will be in a higher pri-
ority queue. This particular method of managing the
lowest priority background queue is known as the quantum
controlled first come first served discipline.

A second alternative is to operate the lowest priority
background queue under a HR discipline so that a Jjob com-
pleting a quantum of service immediately cycles back to the
tail of that queue. It is also possible to let Jobs in the
lowest priority background queue simply run to completion
without any possibility of preemption. This third alterna-
tive may be thought of as a special case of either of the
first two in which the quantum length of the lowest priority

queue has become infinite.

17

Sti1ll another way to deal with this problem is to postu-
late the existence of an infinite number of background levels.
Once this 1is done, the problem disappears entirely since
there no longer 1s a lowest priority queue. While this
solution in no way affects the treatment given to short and
medium length jobs, 1t elegantly removes the singularity
assoclated with the lowest priority queue and thus gives the
algorithm a more uniform structure.

For notational purposes, FB algorithms incorporating
an infinite number of background levels will be identified
as FBoo algorithms while FB algorithms incorporating a finite
nunber of background levels will be ildentified as FBN algo-~
rithms. A specific example with, for example, a total of
three levels (two background and one foreground) will be

identiflied as an FB, algorithm. 1In order to keep the notation

3
simple, no attempt will be made to specify the way in which
the lowest priority queue is managed in the finite case.
There are a few minor variants of the basic RR and FB
scheduling algortihms which have received some attention in
the literature. These algorithms will be identified for
purposes of thils discussion as follows:
RR/D Round Robin with Delayed Entry - Jobs which arrive
at the system do not enter the round robin cycle until
after some period of time has elapsed. This algorithm
might be useful in modeling a system in which the

arrival of new Jobs 1s detected by the periodic polling

18

FB/P

FB/ PP

FB/PO

FB/NQ

of a set of flags. Kleinrock (56) applies the label
"selfish round robin" (SRR) to a particular subcase of
this class, while Krishnamoorthi and Wood (60) refer
to another subcase as a schedule queue discipline.
Foreground Background with Priority Entry - This algo-
rithm is identical to the FB algorithm except that

Jobs may enter directly at any of the background level
queues as Wwell as at the foreground level. The highest
priority class Jobs enter at the foreground level and
Jobs of progressively lower priority enter at progres-
sively higher background levels.

Foreground Background with Priority Entry and Priority
Service - In this modification of the FB/P algorithm,
priority class not only determines a job's initial
point of entry into the system but also determines the
intra-level service order. That 1is, within each level,
higher priority Jjobs are served first and Jobs of the
same priority are served on a FCFS basils.

Foreground Background with Priority Entry and Oldest
Job First Service - In this modification of the FB/F
algorithm, Jjobs within a particular level are served

in the order of their initial arrival at the system
(1.e., oldest Jjob first) rather than in the order of
their arrival at that level (i.e., FCFS).

Foreground Background with Non-Standard Queue Selection

- In standard FB algorithms, the foreground queue has

19

highest priority and the nEn level background queue
has n+15% highest priority. FB/NQ algorithms postu-
late some other priority ordering. However, Jobs
still enter at the foreground level and work their

way up through successive background levels.

Quantum Types

As stated previously, in order to specify a quantum
controlled service discipline it is necessary to identify
both the scheduling algorithm and the quantum type. When
classifying quantum types it is convenient to first make
the distinction between deterministic quanta and random
quanta. In the deterministic case the length of a quantum
is completely determined once a set of associated values
known as quantum defining factors is specified. 1In the
random case the quantum defining factors serve only to
determine the probability distribution characterizing the
length of the associated quantum; quantum length itself is
thus a random variable rather than a constant in this case.

If a job terminates before its final quantum expires,
it leaves the system immediately and a new job 1s then allo-
cated the next quantum of processing. Thus, in systems
employing deterministic quanta, it is not necessarily true
that all quanta corresponding to a given set of quantum
defining factors have the same actual length. However, all

quanta corresponding to a given set of quantum defining

20

factors do have the same maximum length.

In the case of random quanta, the random variable asso-
clated with a particular set of quantum defining factors may
correspond to either the maximum quantum length or the actual
quantum length. This additional degree of freedom results
from the fact that since quantum size 1s already a random
variable its distribution function can be chosen to reflect
the fact that jobs terminate at arbitrary points in time.

In the quantum identification scheme to be used in this
discussion, the initial letter will indicate whether the
quantum 1s deterministic (D) or random (R), and the follow-
ing letters will indicate the quantum defining factors.
Using this scheme, seven different quantum types which have
appeared 1n the literature may be identified as follows:

DI Identical length quanta are allocated to all Jjobs.

RI The i1dentical distribution characterlzes quantum
length for all Jobs.

DPp Different classes of Jjobs (i.e., different priority
groups) are identified with each class having its
own assoclated quantum length.

DN Quantum length 1s defined as a function of the number
of quanta a job has already recelved in an RR system
or the level it has attained in an FB system.

RN At each level in an FB system, quantum length is char-
acterized by a particular distribution function.

DPN Quantum length is defined as a function of both the

21

assigned priority class of a job and the number of
quanta the Jjob has already received in an RR system
or the level it has attained in an FB system.

DD Quantum length is defined as a function of some dy-
namic property of the system such as the number of
Jobs currently present or the number of jobs which

have arrived in the recent past.

A number of authors have also investigated deterministic

quanta in the limiting case where quantum size approaches

zero. The term "processor sharing®, which is due to Klein-

rock (53), is commonly used to identify this 1limiting case.

The following quantum types have appeared in conjunction

with processor sharing systems:

DIz Limit of type DI quanta as quantum size approaches
zero.

DPZ Limit of type DP quanta as quantum size approaches
zero.

DPNZ Limit of type DPN quanta as quantum size approaches
zero.

Once a quantum controlled service discipline has been
defined by specifying a scheduling algorithm and a quantum
type, its behavior may be evaluated by any of a number of
different methods. For example, it is possible to implement
the discipline within an actual system and the make appro-
priate measurements while the system 1is operating. Alter-

natively, it is possible to incorporate the discipline into

22

a simulation model and then evaluate the model using Monte
Carlo techniques. A third possibility 1s to incorporate
the discipline into a mathematical model and then evaluate
the model analytically. This third possibility will be
examined more closely in the discussion which follows.

The simplest mathematical model which can be applied
to the evaluation of quantum controlled service disciplines
is probably the single server queue. For purposes of this
discussion 1t 1s useful to conslder such models as being
composed of two independent components, a service disci-
pline and a stochastic environment. The first component
has already been discussed 1in considerable detall, and so
to complete the description of these models it is only
necessary to consider the second component.

A stochastic environment may be defined as everything
which must be added to a service discipline in order to
completely specify a particular queueing model. More specl-
fically, a stochastic environment consists of an arrival
process, a service time distributlon and an overhead assump-
tion. The nature of each of these three components will

now be considered in some detail.

Overhead Assumptlons

Overhead assumptions are needed to specify the amount
of time necessary to transfer control of the CPU from one

job to another when a quantum expires or a job terminates.

23

Four overhead assumptions which have been used in conjunction
Wwith quantum controlled service disciplines may be identified
as follows:

7 Zero Overhead - The CPU 1s switched from one job to
another in zero time.

C Constant Overhead - A fixed amount of time is required
to swltch the CPU from one job to another.

CPN Constant Overhead for Specific Situations - The amount
of time required to switch the CPU from one job to
another 1s some known function of the Jjob's priority
class and the number of quanta i1t has already received
in an HR system or the level 1t has attained in an FB
system.

R Random Overhead - The amount of time required to
switch the CFU from one job to another i1s an arbi-

trarily distributed random variable.

Arrival Processes

In an early paper, Kendall (50) classified a number of
arrival processes and service time distributions which are
important in the theory of queues. Using an expanded and
slightly modified version of Kendall's notation, the arrival
processes which have proven useful in the analysis of quantum
controlled service disciplines may be identified as follows:
B Bernoulll Arrivals - At the end of each quantum, a

Bernoulll trial is made to determine whether or not a

24

new Jjob 1s to arrive. The probability of success
(1.e., an arrival) is assumed to be the same in each
trial. If quantum length is constant (i.e., type DI),
Bernoulli arrivals imply geometrically distributed
Inter-arrival intervals.

M Poisson Arrivals - In any time interval of length T,

the probability that there will be exactly k arrivals

is equal to L%%lk e 8T uhere a is some positive
constant. This implies that inter-arrival intervals

are exponentially distributed with mean 1/a.

Finite Source Poisson Arrivals - If the number of jobs

at the CPU 1s equal to Jj, then the amount of time

until the next arrival is an exponentially distributed
random variable with mean 1/a(N-}) where a is some
positive constant and N is an integral constant. No

arrivals are possible when the value of J reaches N,

and hence queue size is bounded by N.

G General Arrivals - The inter-arrival intervals are
entirely arbitrary and possibly correlated random
variables. Usually, all that is possible under gen-
eral arrival assumptions is to state the solution of
one problem in terms of the solution of some other
problem.

In time-sharing systems, each active terminal functlons

as a source of jobs (i.e., CPU processing requests). Since

a terminal is not normally permitted to generate a new pro-

25

cessing request until its previous request has been completed,
the Jjob arrival rate typically declines as the number of in-
complete jobs waiting at the CPU increases. However, this
effect becomes less marked as the total number of active
terminals increases and, in the limiting case where the num-
ber of active terminals approaches infinity, it disappears
entirely.

Both Bernoullil and Poisson arrival processes correspond
to this limiting case since neither exhibit any correlation
between arrival rate and queue length. Hence these processes
are sometimes referred to as infinite source arrival pro-
cesses and are best suited for modeling time-sharing systems
with a large number of active terminals. While the Bernoulli
arrival process may be somewhat easier to conceptualize
because of its discrete nature, both processes are mathe-
matically attractive since both incorporate the memoryless
property discussed in Appendix A.

The finite source Foisson arrival process explicitly
represents the case in which the arrival rate decreases as
the number of Jjobs already waiting for CPU service increases.
This is done by assuming that the length of time between the
completion of a Job associated with a particular terminal
and the generation of the next Jjob by that same terminal is
an exponentlially distributed random variable with mean 1/a.
This random variable, which is commonly referred to as

"think time", is assumed to have the same distribution at

26

all terminals. Then, if the total number of terminals in
the system is equal to N and the number of jobs at the CPU
1s equal to J, it follows that the amount of time until the
next arrival 1s an exponenitally distributed random variable
with mean 1/a(N-jJ). This 1s the rationale underlying the

finite source Folsson arrival process.

Service Time Distributions

As 1s evident from the preceding discussion, one way of
characterizing arrival processes is by defining the distri-
bution of their inter-arrival intervals (i.e., the intervals
between the arrival of successive customers). These same
distributions are often used to characterize the amount of
processing time that individual Jjobs request, and when this
1s done the abbreviation used to identify the arrival pro-
cess 1s also used to identify the corresponding service time
distribution. As the following list indicates, three of the
four service time distributions which have been analyzed in
the literature exhibit this correspondence.

B Bernoulli Sum Service Times - At the end of each quan-
tum, a Bernoulll trial is conducted to determine
whether the job which has Jjust completed the quantum
is to leave the system or re-cycle for at least one
more quantum of processing. The probability of leaving
the system is assumed to be the same in each trial.

Thus the total amount of service time required by a

27

Job 1s distributed in the same manner as the inter-
arrival intervals of a Bernoulli arrival process
operating with the same quanta.

M Exponential Service Times - The total amount of pro-
cessing time required by each job is an exponentially
distributed random variable. These random variables
are all independent and identically distributed.

G General Service Times - The total amount of processing
required by each arriving job is an arbitrarily distri-
buted random variable. These random variables are all
independent and identically distributed.

H Hyperexponential Service Times - The total amount of
processing time required by an arriving Jjob is a hyper-
exponentially distributed random variable. These
random variables are all independent and identically
distributed.

In practice, the hypothesis of exponential service
times has proven to be a crude but not unacceptable approx-
imation to observed service times. However, Walter and
Wallace (82) indicate that a more precise fit to empirical
data can be obtained by assuming that service times are
hyperexponentially distributed. One way to interpret the
hyperexponential assumption is to imagine that there exist
two classes of jobs, class A and class B, with incoming
jobs falling into class A with probability Pp and into

class B with probability pg (pA $ By & 1). Jobs in class A

28

are assumed to have exponentially distributed service times
with mean 1/a Wwhile Jobs in class B are assumed to have
exponentially distributed service times with mean 1/b (a#b).
Under these conditions service times will be distributed as
pAae-at + pBbe-bt which 1s a hyperexponential density func-
tion of the second degree. In interactive time-sharing
systems, class A may be assocliated with editing requests

and class B with all other requests.

Summary and Evaluation

In summary, a quantum controlled service discipline is
defined by specifying its scheduling algorithm and its quan-
tum type. Once a service discipline has been defined, it
may be evaluated by the use of queuelng theory. To do this
it is necessary to embed the service discipline 1n a sto-
chastic environment which, as a minimum, must consist of an
arrival process, a service time distribution and an overhead
assumption. This procedure for model construction is de-
picted in Figure 2-3.

As indicated in Table 2-1, a large body of published
research has been devoted to analyzing models which fall

within the framework of Figure 2-3. ‘ost of the papers

29

souTTd(o81(Q 90TAISS POTTOIZUOY unjuend Jo sTepon Juiensuyd

V 3184 (-2 aanITd

8 NdD D Z OH W g 9 Mz W g WOONVH OILSINIWYILAQ SLNVIHVA €4 HY
LITT TLI] ﬂlﬂ_: | _4.._.
NOI LdWNSSY HLSIda SSE00Hd ddX L WHLIHODTV
dVEHHHEAO dOIAHIS TYATHYY WOLNVOD ONTINAIHOS
LNIWNOHI ANT mzHAmhomHQ
QI LSVHOOLS dJOIAHHAS

THAONW

30

auiTdi1osTg ©°TAJISS 8Y3 JO 8an3donI3zg plTiIvlaC

d

3I8d (-2 @andld

|

INITdIOSIA
JOIAHIS

Q0
NE TH ZNdd 740 ZI0 QQ N4 NO dd 10 N/€d 0d/8d dd/€d m\mm a/8H Ngg ©gg um
| TIT T 1iT |
{ IIKIT OHIZ FAT LI SO _.
_ i .
WOONVY 5T LSINI WHEIEA SINVIHYA mm .
| . ﬂ
IXL WHITHOOTY
WAINYOD HNITNAEHOS
ONITAGHHDS
|

31

AUTHOR (Ref. No.),
DATE

Adiri &
Avi-Itzhak (5),1969

Baskett (8),1970
Chang (13),1966
Coffman (17),1966

Coffman (18),1967
Coffman (19),1968
Coffman (20),1968

Coffman &
Kleinrock (22),1968

Coffman & Krishna-
moorthi (23),1964

Coffman & Muntz
(24),1969

Coffman, Muntz &
Trotter (25),1970

Estrin &
Kleinrock (31),1967

Fife (34),1966

Greenberger (44),
1966

Kleinrock (51),1964

SCHEDULING
ALGORITHM

RR

FB

RR.FBZ. N

FBOO /PP

RR,FB
RR,FB

RR,FB
FBOO /P

RR,RR/D

RR,FB
oo

FBB/N
RR

RR

Table 2-1

ARRIVAL

QUANTUM PROCESS/
TYPE SERVICE
DISTR.
DI Mf/M
D1Z Mf/d
RI M/B
DI,DN,DD M/M, Mf/M
DIZ
e SURVEY wwe
DI M/M
DD 3/B
DI,DIZ B/B, M/M
DPZ
DI Mf/B
DIZ M/G
DIZ M/M
=== SURVEY =w=
DN Mf/H
DI Mf/M
DI B/B
Part A

OVER-
HEAD

Hesearch and Survey Papers Dealing with the Analysis of

Quantum Controlled Service Disciplines

32

AUTHOR (Ref. No.),
DATE

Kleinrock (53),1567
Kleinrock (54),1968
| Kleinrock (55),1969
£leinrock (5€),1970

Kleinrock &
Coffman (57),1967

Krishnamoorthi

(59),1966

Krishnamoorthi &
Wood (60),1966

McKinney (61),1969
Patel (64),1964
Rasch (66),1970

Sakata, Noguchi &
Oizumi (68),1969

Scherr (69),1965
Schrage (70),1967
Shemer (75),1967

SCHLDULING
ALGORITHM

RR

RR

ALL TYPLS
RR/D

ALL TYPES
RR

RR,RR/D

RR,FBOO/PO
RR
RR

RR
FB
oo

RR,FBOO/P

Table 2-1

ARRIVAL

QUANTUM PROCESS/
TY}FE SERVICE
DISTR.

DIZ,DPZ M/M
DIz Mf/M
DFN G/G
D1Z M/M
DEN G/G
DFENZ
DI Mf/M
DI Wf/w

swss SURVEY wew
DI,DN Mf/G. M/G
DI M/M
DIZ M/G

s ™M
DIZ Mf/.
RN, DN M/G, MM
BIZ
DI,DN M/
Fart B

OVER=-
HEAD

Research and Survey Papers Dealing with the Analysis of

wuantum Controlled Service Disciplines

L)

present an analysls of a specific model: that 1s, of a par-
ticular service discipline operating in a particular stochas-
tic environment. Usually the point of the analysis is to
obtain an algebraic formula which expresses the expected
walting time of a job as a function of the Job's execution
time. This makes i1t possible to determine the extent to
which short jobs are favored over long jobs. In addition,
since these formulas typlcally include quantum length, over-
head time, arrival rate and mean service time as parameters,
it 1s possible to examine the treatment of long and short
Jobs under a wide varlety of conditions.

There are a number of uses to which such formulas might
be put. Perhaps the most obvious 18 the determination of
optimal quantum length for models in which both the quantum
length and the overhead time are non-zero. In such models
longer quanta reduce overhead but also lncrease the expected
walting time for short Jobs. On the other hand, very short
quanta result in a high percentage of overhead, thus in-
creasing the expected walting time for all -jobs including
the short ones. Hence 1t 1s reasonable to suppose that an
optimal quantum length exists at some intermediate point.

To determine thls optimal length 1t 1s first necessary
to define exactly what it is that 1s being optimized. A
convenlient way to approach thls problem 1is to define a cost
function which reflects the delays assoclated with the system

and then to try to minimize cost. Since quantum controlled

34

service disciplines are primarily designed to provide good
service to short jobs, it is reasonable to assume that the
cost assoclated with keeping a short job walting is greater
than the cost associated with keeping a long Job walting.
It is also reasonable to assume that the longer a Jjob is
kept walting, the greater the cost.

The simplest way to represent these two assumptions
mathematically is to define the cost of keeping a job with
total service time S walting for a period of time T as
T+F(S) where F is a positive, non-increasing function of S.
Cost functlions constructed in this manner have been analyzed
by Fife (34), by Greenberger (44), and most comprehensively
by Rasch (66). More information must be collected before
any general results can be reported, but the potential for
additional work in this area is quite promising since a num-
ber of models have been solved analytically and only a very
few have been optimized with respect to quantum length.

A number of other significant problems in the area of
quantum controlled service disciplines also exist. For
example, it would be valuable to compare the performance of
RR and FB algorithms under a variety of overhead assumptions
to determine the optimal algorithm for a specific applica-
tion. The optimal choice could be specified under relatively
simple quantum assumptions (e.g., DI) or under more complex
quantum assumptions (e.g., DPN or DD). Note that it is

necessary to solve the optimal quantum length problem for

55

each specific algorithm before attacking this comparison of
optima problem. Fife (34) deserves recognition for the
results he has obtalned in this area, but unfortunately his
work i1s of somewhat limited appeal because of 1ts numerical
rather than algebraic nature; all the other papers appearing
in Table 2-1 are distinctly algebralc.

Another conslideration which naturally emerges from this
discussion 1s the relative importance of the arrival process
and the service time distribution in optimization problems
in general. For example, do exponentlal and hyperexponential
service time distributlions or finite and infinite source
arrival processes yleld different optima? If so it 1s neces-
sary to examine the arrival and service time statistics very
carefully before selecting an algorithm. If not, it may be
possible to discéver general guldelines which can be followed
with confidence in a varliety of situations.

It should be clear from the preceding discussion that
even though a considerable amount of effort has already been
expended analyzing quantum controlled service disciplines,
many problems remaln unsolved. However, these problems are
qualitatively different from the earlier ones in that they
deal with the optimization and comparative evaluation of
proviously analyzed models rather than the determination of
conditional waiting times for newly proposed models. Thus
solutions to these new problems will be bullt upon existing
knowledge in a way that is characterictic of many other

branches of sclence and mathematics.

36

CONVENTIONAL FRIORITY DISCIPLINES

In most real-time systems, incoming jobs are assigned
to different priority groups according to the relative ur-
gency with which they must be completed. Jobs which must
be completed in the shortest possible time are assigned to
the highest priority group, slightly less urgent jobs are
assigned to the next highest priority group, and so on.
Note that a job's priority group, which is the basis for
providing preferential service, 1is specified at job entry
time. This 1is 1in contrast with interactive time-sharing
systems employing quantum controlled service disciplines
since thegse systems use total running time as the basis for
providing preferential service even though this factor is not
assumed to be specified at Jjob entry time.

The service disciplines used in formulating queueing
theoretic models of real-time systems are known as conven-
tional priority disciplines. These service disciplines all
exhibit the followlng three characteristics:

1. Jobs are assigned to priority groups at the time they
first enter the system.

2. Whenever a server becomes avallable it 1s always
assigned toc a Jjob from the highest non-empty priority
group.

3. A Jjob's priority group never changes.

37

Conventional priority disciplines may be partitioned
into a number of subcases by gliving different interpreta-
tions to the notion of availability which appears in Char-
acteristic 2. For example, if a server becomes available
only after completing the processing of a Jjob, the disci-
pline is known as non-preemptive or head-of-line. Under
this discipline, a Job 1is always allowed to run to comple=-
tion even though a higher priority Jjob may arrive while it
is telng processed.

A seconc posslibility is to assume that servers are
always available. Thus, if a higher priority Job arrives
while a lower priority Jjob is being served, the latter will
be e jected from the service facllity and the higher priority
Job will begin to receive service immediately. Disciplines
in which Jjobs can be ejected from the server in this way
are known as preemptive disciplines.

Preemptive disciplines may be further subdivided on
the basis of the treatment given to Jobs which return to
the service facility after having been preempted. If such
jobs are permitted to simply continue service from the point
where they were interrupted, the service discipline 1s known
as a preemptive-resume discipline. If, on the other hand,
jobs are forced to return to their original starting points
and repeat everything they have already done, the discipline
is known as preemptive-repeat-identical. This disclpline is

of some interest in computer applications where 1t may be

38

preferable to restart a job from its initial point rather
than save all its status information and temporary storare
so 1t can be started arsailn from the point of interruption.

Freemptive~repeat-identical disciplines are distin-
fFulshed from preemptive-repeat-different disciplines by the
fact that, in the latter case, the amount of processing time
that a job requests is re-calculated each time a Jjob is re-
started from its initial point after a preemption. Preemp-
tive-repeat-different disciplines appear to have few if any
applications in computer systems analysis and are mentioned
only for the sake of completeness.

An early example of the application of non-preemptive
priority disciplines to the analysis of computer systems is
presented by Chang and wWong (16). 1In a more recent paper,
Chang (15) presents a number of other examples involving
both non-preemptive and preemptive~resume disciplines. This
latter paper is also valuable for tutorial purposes since a
number of analytlic techniques are carefully reviewed.

The discussion thus far has assumed that within each
priority group service is provided on a rCFS basis. It 1s
also possible to study conventional priority systems 1n
which the intra-group service discipline 1is of the quantum
controlled type. For example, Chang (14) has analyzed a
model in which each priority group functions as a type iR,
21, /B, 7 system, and Adiri (3), (4) has conslidered the

case in which each priority egroup functions as a type HR,

39

DI, M/M™, C system.*

Both Chang (14) and Adiri (3) assume that the priority
discipline operating between groups is of the preemptive-
resume type. In his more recent paper, Adiri (4) considers
three additional inter-group disciplines. The first assumes
that once a Job has been allocated a quantum of processing,
no preemption is possible until the end of that quantum is
reached. Preemption occuring at the end of a quantum is of
the preemptive-resume type.

In the second discipline jobs may be preempted at any
time, but preemption causes the intermediate results de-
veloped during the current quantum to be lost. That is, a
preempted Jjob 1is restarted from the beginning of the quantum
it was receliving when it was interrupted. This discipline
1s thus midway between the preemptive-repeat-identical
discipline and the preemptive-resume discipline.

The third discipline is a combination of the second
discipline and the standard preemptive-resume discipline.
Preemption is permitted at any time and, if a Jjob is pre-
empted during the initial overhead phase (i.e., the set-up
period) of the quantum, the quantum is considered lost and
the job is later restarted from the beginning of that quan-
tum as in the previous case. However, if a Job is inter-

rupted during the processing phase of the quantum, the job

*These classifications correspond to the column designations
of Table 2-1.

4o

1s later restarted from the point of interruption as in the
preemptlve~resume case. This particular discipline would
appear to be a logical choice for actual real-time systems
employing quantum controlled service disciplines within each
priority group.

Schrage (71) presents a model which is similar to
Adiri's except that the service discipline within each pri-
ority group is of the FCFS type. Schrage assumes that each
Job 1s partitioned into a set of non-preemptive, preemptive-
resume and preemptive~repeat intervals. A higher priority
Job arriving during a non-preemptive lnterval must walt
until the end of that interval before galning control of
the CPU which is finally relinquished on a preemptive-resume
baslis. During preemptive~repeat intervals, higher priority
Jobs immediately gain control of the CPU, and the job which
was preempted is forced to begin agaln from the start of
the preemptive-repeat interval. This corresponds to Adiri's
second discipline. Finally, during a preemptive-resume
interval, preemption occurs in the normal preemptive-resume
sense.

Schrage also treats the possibility of overhead during
each preemption. His model is thus capable of representing
actual systems with a high degree of precision. Unfortu-
nately, examples including non-zero preemptive overhead
prove difficult to treat analytlcally and are only discussed

in numerical terms.

b1

Since the primary reason for implementing conventional
priority service disciplines is to provide higher priority
Jobs with preferential service, most analyses are concerned
with obtaining walting times for jobs in each priority group.
In general, preemptive disciplines favor high priority jobs
more than non-preemptive disciplines, but the optimal amount
of preemption to permit is an open question, especially in
cases where preemption introduces overhead. Schrage (71)
has obtained some preliminary results along these lines,
but the potential for additional work in this area is great.

While not directly related to the primary concerns of
this section, it 1is interesting to note that priority disci-
plines can be used to analyze limiting aspects of the ration-
ale which underlies the quantum controlled service disci-
plines discussed in the preceding section. Recall that the
primary purpose of quantum controlled service disciplines
1s to provide short jobs with preferential service. The
problem is that job length is not assumed to be specified
at the time a Job enters the system. However, if such in-
formation were available, it would be a simple matter to
define a service discipline which, at any point in time,
always provided service to the shortest Job present.

Such a discipline can be considered to be a conventional
preemptive-resume priority discipline where the priority
of an entering job is given by the total processing time of

that job, shorter jobs having higher priority. 1If the

42

arrival process 1s Polsson with mean rate u and the service
time distribution has density function g(t), then there will
be a continuum of priority groups corresponding to all the
positive real numbers. The arrival process for all the
prlorlty groups between r and r' willl be Polsson with mean
rate Si usg(t) dt, and of course all programs arriving at
priority group r will have execution time equal to r. This
particular discipline 1s closely related to the disciplines

studied by Phipps (65) and by Schrage and Miller (72).

43

ROTATING STORAGE SERVICE DISCIPLINES

A great many computer systems utilize rotating disks or
drums as auxiliary storage devices. For purposes of this
discussion a drum will be defined as any rotating storage
device with fixed read/write heads while a disk will be de-
fined as any rotating storage device with movable read/write
head. Note that under these conventions, devices commonly
known as fixed-head or head-per-track disks are classified
as drums.

When analyzing the performance of disks and drums, it is
natural to think in terms of a queueing process in which in-
coming read and write requests represent customers, the disk
or drum represents the server, and the amount of time neces-
sary to complete a read or write request represents the
service time. The service time in drum systems 1s the sum
of two components, the rotational delay assoclated with
bringing the proper drum sector to the read/write heads plus
the actual time required to make the transfer. With disks
the service time is the sum of these two components plus the
time necessary to move the read/write heads into proper
position (i.e., the seek time). Since service times are
slightly simpler in the case of drums, these devices will be
considered first.

From an analysis standpoint, the most interesting aspect

of drum systems 1s the order in which transfer requests are

Ly

serviced. Note that the FCFS discipline is highly ineffi-
clent since the time spent walting for a particular sector

to rotate into position under the drum heads could be better
spent transferring data to or from the sectors passing under
the heads during the waiting period. A more efficient disci-
pline can thus be constructed by sorting all requests accord-
ing to the drum locations they reference and then always
servicing the request which the heads will reach next. This
discipline, which Denning (28) designates as shortest access
time first (SATF).* has been studied by Weingarten (84),
Denning (28), Coffman (21), and Abate and Dubner (1).

The first three authors consider the case in which
transfer requests always reference data blocks of fixed
length. Denning i1s primarily concerned with estimating
average service time as a function of the number of requests
walting in the queue. Welngarten and Coffman hypotheslze
Poisson arrivals and then evaluate system performance as a
function of the mean arrival rate, with Weilngarten's solu-
tion serving as an upper bound to the more exact solution
obtained by Coffman. Abate and Dubner, who deal with the
case of varlable block size, present only approximate re-
sults for this more difficult problem.

Since disks are aiso rotating devices, they too may

employ SATF service disciplines. That 1s, after the heads

#WJeingarten (84), for entirely frivolous reasons, refers to
this service discipline as the Eschenbach scheme in memory of
the Bavarian poet Wolfram van Eschenbach (1170-1220). The
term has gained little currency.

5

have been positioned in a particular location (i.e., on a
particular cylinder), the SATF discipline can be used to
sequence through all the transfer requests which reference
that cylinder. Weingarten (85) has analyzed the effect
that such a discipline can be expected to have on system
performance. ‘iost other investigators have simply assumed
a FCFS discipline within each cylinder, arguing that since
the number of cylinders per disk 1is large - typlcally on
the order of 100 or 200 - 1t is unlikely that there will

be a slgnificant number of requests queued for a particular
cylinder at any given time unless disk use 1s extremely
heavy. These investigators thus concentrate on other aspects
of disk behavior in thelr models.

One frequently studled problem concerns the scheduling
of transfer requests 1n a way that reduces disk head move-
ment. Agaln, the simplest policy 1s to service all requests
on a FCFS basis with no conslderation of the resulting head
movement. A second policy, termed shortest seek time first
(SSTF) by Denning (28), corresponds to the SATF policy in
that the heads are moved as little as possible on each seek,
This 1s essentlally a step-by-step or local minimization
process. Frank (39) considers the global minimization problem
of finding the seek pattern which minimlizes the total amount
of seek time necessary to service all requests present in
the disk queue at a glven time.

During perlods of heavy load both minimization policles

L6

have the potentlal disadvantage of creating excessively long
delays for certain requests. This i1s because minimizing
head movement tends to keep the heads in a particular region
for a long period of time. Newly arriving requests directed
towards this region will receive good service since they
will require comparatively short seeks. However, requests
directed towards more distant regions will continue to wait
Since it would be sub-optimal to move the heads a large dis-
tance to serve these requests and then to move the heads all
the way back to serve the newly arrived requests.

To avold the possibility of these excessive delays,
Denning (28) has proposed a head movement policy called SCAN
in which the heads continually sweep back and forth across
the disk, servicing requests for each cylinder they pass but
never changing direction until the end of the sweep. Denning
(28) compares this policy with FCFS and SSTF and concludes
that SCAN i1s the most desirable even though SSTF 1s more
efficient. Weingarten (85), Sharma (74), and Frank (39)
have also chosen versions of SCAN for their main analyses.

Another way of reducing seek time on disks is to organ-
1ze the data so that the most frequently referenced records
are on the middle cylinders. Thus, the heads will never
have to move more than half the full seek distance to reach
these records. The possible effects of such a policy on
performance are considered by Frank (39) and by Abate, Dub-

ner and Welnberg (2). Sharma (74) also discusses the

b7

problems assoclated with allocation of data on disks, con=-
centrating on situatlions where a single record may be quite
large.

An entirely different analysis problem 1s assocliated
with disk systems which contain a number of independently
positionable sets of heads. Usually, each set of heads
serves a different disk drive, with a number of drives
connected to a single channel capable of transferring data
to or from only one drive at a time. Thus, seek operations
can be carried out in parallel while transfers must be
processed serially. The performance of systems of this
type has been studied by Fife and Smith (36), Seaman, Lind

and Wilson (73), and Abate, Dubner and Weinberg (2).

48

CAPACITY PHOBLEMS

The primary emphasis of the preceding three sections
has been on the determination of response times and waiting
times in various queueing situations. In addition to these
time oriented problems, queueing models can also be used to
treat a number of space oriented problems related to such
1ssues as the amount of storage required by waiting jobs,
the time between queue overflow in finite capacity systems,
and the allocation of queue space in finite capacity systems
with priority or multiple source inputs. These questions,
which will be grouped together under the heading of "Capacity
Problems", have been studied in computer oriented contexts
by Boudreau and Kac (G), Harrison (45), Weingarten (83),
Chang and Wong (16), Chang (13), and Bowdon (10).

Several of these papers treat systems in which arrivals
occur 1in groups or batches. In such systems a random vari-
able 1s associated with each arrival to specify the number
of customers who have Jjust arrived. Inter-arrival intervals
are determined by the arrival process as in ordinary queueing
systems. Thus ordinary queueing systems can be regarded as
special cases of batch arrival systems in which the number
of customers per arrivél is always equal to one.

A very early example of a batch arrival model 1s pre-
sented by Boudreau and Kac (9). This model consists of an

input generator which presents a processing unit with a set

k9

of transactions to process once every n seconds. The number
of transactions presented is an integer valued random vari-
able with a positive probability of being equal to zero, and
the amount of time required to process an individual trans-
action 1s equal to 2n (i.e., twice the input generation
period). Under these assumptlons Boudreau and Kac calculate
the distribution of the number of transactions in the system
at equilibrium using a Markov chain approach. They also
calculate the average time between queue overflow in cases
where only a finite amount of storage 1s availlable.

Weingarten (83) presents a model of a message switching
computer which also includes batch arrivals. In this model
there are n input lines all sending messages to a single
processor. The function of the processor 1s to simply re-
transmit these messages on a character by character basis.
The amount of time required to re-transmit a single character
1s assumed to be a constant, and so the amount of time re-
quired to re-transmit a message is proportional to the number
of characters 1n the message.

Each input line is assumed to generate messages accord-
ing to a Polsson process, and the amount of time required to
re-transmit each message 1s assumed to be an exponentially
distributed random variable. Weingarten then conslders the
queueing system in which characters correspond to customers,
arrivals occur in batches of exponentlal size, and the ser-

vice time per customer 1s constant. Note that this model

50

requires a slight modification of the notion of batch ar-
rivals since the number of customers per batch is no longer
necessarily integral.

The advantage of Weingarten's model is that the number
of characters in the system at any time is simply equal to
the waiting time for an arriving message multiplied by the
number of characters which can be transmitted per unit time.
The wailting time for an arriving message can then be calcu-
lated for the simpler case of Poisson arrivals and exponen-
tial service times. Welngarten goes on to calculate the
average time between queue overflow in cases where only a
finite amount of storage is available. Since this problem
is more difficult than the corresponding one considered by
Boudreau and Kac, a number of simplifications have to be
made and only approximate results are obtained.

Harrison (45) considers a message switching computer
similar to the one analyzed by Weingarten, the difference
being that Harrison defines capacity in terms of stored
messages rather than stored characters. Aside from this,
Harrison's model closely resembles Weingarten's in that a
number of input lines send messages to a single processor
for re-transmission, each input line functions as a Polsson
source, and message re-transmission times are exponentially
distributed. Harrison compares the performance of systems
having a dedicated fixed buffer for each line with the per-

formance of systems having a single shared buffer serving

51

all lines. Needless to say, the latter arrangement proves
more efficlent. However, overhead factors associated with
implementation are not taken into account.

In the batch arrival models presented by Boudreau and
Kac and by Welngarten, the service time for each customer
1s defined as a constant. It i1s also possible to construct
batch arrival models in which the service time for each
customer is a random variable. Delbrouck (27) presents a
model of this type in which service time is a complex random
function including both initial set-up time and processing
time. Delbrouck's model 1s used to analyze certain problems
related to the polling of input lines in computer systems.
Since the model is not primarily concerned with capacity
problems, it will not be discussed further in this section.

Chang and Wong (16, p. 587) present a slightly different
approach to the problem of queue capacity. This approach,
which is discussed more thoroughly in a later paper by Chang
(13, p. 122), 1s to assume that the amount of space required
to store each Job is specified by a random variable with
generating function F(z). Then, if the generating function
for the number of Jjobs in the queue is given by U(z), the
total storage requirement for all Jobs in the queue will
have generating function U(F(z)). This follows directly
from the discussion of compound generating functions pre-
sented by Feller (32, p. 268). The advantage of this ap-

proach is that U(z) can often be determined using standard

52

procedures or well known formulas. Then, once F(z) is speci-
fled, the generating function for the total storage required
by the Jobs in the queue can be immediately obtained.
Bowdon (10) examines the problem of managing finite
capaclty queues in systems which incorporate conventional
priority service disciplines. The specific model Bowdon
considers consists of R priority classes being served on a
non-preemptive basis by a single service facility composed
of K ldentical servers. Arrivals to each priority class
are generated by a Polsson process, and all jobs have expo-
nentially distributed service times with the same mean.
Bowdon adds to thlis rather familiar system the addi-
tional restriction that queue length may not exceed M jobs.
If a new Jjob arrives when the queue length is equal to M,
that job 1s permitted to enter the queue only if there is a
job already walting in the queue whose priority is lower
than that of the newly arriving job. In such cases the
newly arriving job displaces the lower priority job and the
latter is simply considered lost. Likewlise, jobs which
arrive at a time when the queue length 1s equal to M and
which find no jobs of lower priority already waiting in the
queue are also lost. Bowdon then calculates the average
number of Jjobs of each priority class in the queue, the
average walting time for jobs of each priority class, and
the probability that a job of a particular priority class

will not be displaced by a higher priority job while it is

waiting.
53

NETWORK MODELS

All the examples discussed thus far have been concerned
with the analysis of individual processing elements such as
CPU's, disks or drums. In actual computer systems these
processing elements interact with each other since the com-
pletion of a CPU processing request is usually followed by
the initiation of an I/0 processing request and vice versa.
Queueing networks provide a natural mathematical tool for
analyzing situations of this type, and so it is not sur-
prising that network models have been applied to a number
of problems in computer systems analysis.

As indicated in Chapter 3, a great deal of effort has
been devoted to obtaining closed form expressions for the
equilibrium distributions of various queueing networks.
These distributions may also be obtalned numerically using
a fairly simple iterative technique once the network param-
eters are specified. A computer program based on this
iterative technique has been developed at the University of
Michigan and is described by Wallace and Rosenberg (81).
This program has been applied to a number of problems in
computer systems analysis as indicated by the work of Fife
and Rosenberg (35), Smith (76), (?77), and Wallace and Mason
(80).

Fife and Rosenberg consider a situation in which pro-

grams arrive at the system, are loaded into core through a

54

single I/0 channel, execute for a certain period of time,
and then leave. The loading of one program may proceed in
parallel with the execution of another so long as there is
enough room in core to load the new program. To simplify
matters, it 1s assumed that all programs are approximately
the same size and that the capacity of core is five programs.
Arrivals to the system are assumed to form a Polisson
process, and both program loading and execution times are
assumed to be exponentially distributed. 1In this model,
program execution time includes output transmission time as
well as CPU processing time. Since output transmission
occurs at teletype speed and can be performed in parallel
on a multiplexed basls, and since CPU processing time is
quite small 1n comparison to output transmission time, it
is approximately true that program execution proceeds in
parallel for all programs in core. Note that this 1s not
identical to the processor sharing assumption discussed
previously since parallel operation does not result in a
proportional decrease in the execution rate of each Jjob.
Fife and Rosenberg use this model to explore the effect
on system performance of the program loading time to program
execution time ratio. Since the model itself can be criti-
cized on a number of gfounds. especially with the advantage
of seven years' hindsight, particular results will not be
discussed in detall. The real significance of this work 1s

that it demonstrated, at a relatively early date, the ap-

55

plicabllity of numerically evaluated queueing network models
to problems in computer systems analysis.

Smith (76) also appears to be more interested in demon-
strating the applicability of the method than in attacking
a particular problem. Smith's paper actually presents two
different models: a highly complex and realistic one which
could in principle be analyzed using the queueing network
approach, and then a somewhat simplified but still realistic
model which is analyzed numerically. The second model con-
sists of a CPU, a disk storage device, and a finite number
of interactive user terminals. Programs are loaded from
the disk and then request a certain amount of CPU processing.
Each time a program completes a CPU request, one of three
alternatives 1s selected: with probabllity q, a requesgt is
made for user terminal input; with probability p, a request
is made to load an overlay segment from the disk; with
probability r = 1-p-q, the program terminates and a request
is made to load the next program from disk. The values of
P, @ and r are constant and thus do not depend on the number
of CPU requests a program has previously made.

Since overlay and new program loading requests both
utilize the same I/0 device and channel, it 1s necessary to
specify the order in which these requests are served. Smlth
evaluates two different service disciplines, non-preemptive
priority with program loading requests favored and preemp-

tive-repeat priority with overlay requests favored. Pre-

56

emption 1s of interest in the second case because it 1is
assumed that program loading requires an average of two
seconds while segment overlay requires an average of only
150 milliseconds.

As an additional point of interest, Smith introduces
two possible distributions for program loading time, expo-
nentlal and second order Erlang. This illustrates the point
that the servers in numerically evaluated queueing networks
need not all be exponential. In fact, any distribution
whose Laplace transform 1s equal to the gquotient of two
polynomials may be used. Such non-exponential servers are
constructed using Erlang's method of stages as described by
Wallace and Rosenberg (81). Cox and Smith (26, pp. 110-117)
present a more detalled discusslion of this method.

Smith's paper thus introduces three important aspects
of queueing network models which do not appear in the earlier
work of Fife and Rosenberg. These are the use of non-expo-
nential servers, flexibllity in service disciplines, and the
abllity of a customer leaving one server to select the next
server according to a fixed set of probabilities.

In a subsequent paper, Smith (77) introduces still
another aspect of queueing network models, namely the pos-
sibllity of having service time depend on queue length.

This is useful when modeling drum behavior since, assuming
the drum discipline is SATF, the mean time between transfers

- and hence the mean service time - will decrease as the

57

length of the drum queue increases. In addition to an SATF
drum, Smith's model contailns a CPU and a finite capacity
paged core memory. Programs execute on the CPU until they
generate a page fault, then request a page transfer from
the drum, then execute until the next page fault, and so

on until they terminate.

Smith explicitly represents the fact that the amount
of tlme a program executes between page faults depends on
the number of pages the program already has in core. This
1s done by assuming that each time a program requests CPU
service, the amount of service provided is an exponentially
distributed random variable whose mean 1s an empirically
determined function of the number of pages the program has
in core. Smith uses the same approach in his drum model,
letting the drum service time be an exponentially distri-
buted random variable whose mean i1s a function of the length
of the drum queue.

Smith then examines system performance under a varlety
of Jjob mixes, multiprogramming allocation policies.‘and drum
speeds, reaching the conclusion that demand paging in systems
with a small amount of mailn memory and a conventional speed
drum results in excessive page traffic and low CPU utiliza-
tion. 1In addition to introducing the notion of state depen-
dent service times, this model is noteworthy for 1lts repre-

sentational fidelity and for the accuracy of its predictions.

Wallace and Mason (80) analyze a paging system that is

58

quite similar to Smith's, the primary difference being that
Jobs are initiated by the loading of an entire block of
pages rather than by the loading of a single page. The
initial block of pages is not intended to represent a pre-
paging operation, but instead represents an initial burst

of page demands generated during the first millisecond or

so of CPU execution. Since the CPU execution time is negli-
gible, this burst of individual requests is combined into
the 1nitial block to simplify the model.

After the initial block of pages has been loaded, pro-
grams are assumed to attain a kind of equilibrium in which
the interval between page faults is no longer sensitive to
the total number of pages 1n core. This represents a simpli-
fication of Smith's earlier model. In addition, drum service
times are assumed to be insensitive to the length of the
drum queue, thus further simplifying Smith's model. Both
drum service times and CPU service times (i.e., intervals
between page faults) are exponentially distributed.

To complete their model, Wallace and Mason assume that
each time a program completes a CPU service request, the
decision as to whether a page fault is to be generated or
the program is to be terminated 1s determined by an indepen-
dent Bernoulli trial. |Thus. programs enter the system with
an initial block of pages, then alternate between CPU pro-

cessing and 1/0 processing for a period of time, and then

finally leave.

59

In this model the size of memory is proportional to
the maximum number of programs which may be either queued
for or receiving CPU or I/0 processing. This number is
varied to determine its effect on system performance. It
1s of interest to note that for a wide range of parameters
Wallace and Mason find that there 1s comparatively 1little
galn in system performance after memory size goes beyond
eight programs.

Kleinrock (52) presents a network model which is not
based én the numeric approach of the four preceding papers
but 1s instead based on an analytic closed form solution
obtained by Koenigsberg (58). Kleinrock first considers a
system composed of two processors, Processor 1 and Processor
2. Jobs entering the system are first served by Processor 1,
then held in an inter-processor buffer, then served by
Processor 2, and then ejected from the system. It is assumed
that the inter-processor buffer has a maximum capacity of
N Jobs.

When the inter-processor buffer fills up, Processor 1
is forced to stop operating and system performance suffers.
Since the probability of the buffer filling up depends on N
and on the ratio of the service times of the two processors,
Kleinrock systematically varies these parameters and calcu-
lates the effect on system performance. It should be noted

that service times are assumed to be exponential in all

cases.

60

Kleinrock then generalizes the problem by considering
the case of M processors with jobs proceeding sequentially
from Processor 1 to Processor M and then leaving the system.
Agaln, each inter-processor buffer is assumed to have a
capacity of N jobs. Only approximate results are obtalned
for this more difficult case.

Gaver (40) presents an analytic solution for a rather
different network model. Gaver's model consists of a CPU,

a fixed number of identical I/0 processors, and a fixed

number of programs. Each time a program completes a CPU
processing request, it generates an I/0 processing request

and vice versa. All I/0 processing requests are exponentially
distributed with the same mean, and there 1s no queueing for
I/0 requests unless the number of programs currently re-
questing I/0 exceeds the number of available 1/0 processors.
In particular, if the number of programs in the system 1is

less than or equal to the number of I/0 processors in the
system, queueing for I/0 never occurs.

Gaver proceeds to calculate CPU utllizatlion as a func-
tion of the number of programs in the system. The unique
significance of this work is that Gaver 1s able to carry out
this calculation without explicitly specifying the CPU
service time distribution. That is, the CPU service time
distribution appears as a parameter in the final expression
for CPU utilization. It 1s thus possible to ev.luate the

effects of different service time distributions in an effi-

61

clent manner. As an application, Gaver shows the extent to
which CFU utilization i1s reduced as the variance of the
service time increases in cases where the mean service time
1s held constant.

It 1s worthwhile to point out the correspondence between
Gaver's model and the finite source time-sharing models dis-
cussed earlier. As long as the number of 1/0 processors is
equal to the number of circulating programs, Gaver's model
corresponds preclisely to a finite source time-sharing model
with exponential "think times", an FCFS service discipline,
and general service times.

The speclal advantages of queueing network models in
computer systems analysis should by now be apparent. Such
models are well sulted for representing concurrent operation
of a number of processing units, and the size of maln memory
is often representable as the number of circulating customers
(1.e., programs) in either some part of or all of the net-
work. In addition, the opportunity exists for realistically
representing program behavior as an alternating sequence of

CPU and I/0 processing requests.

A number of recently developed network models are dis-
cussed in subsequent chapters of this thesis. These models
include the work of Baskett (8), Arora and Gallo (7),
Moore (62) and Tanaka (79). Baskett's model is discussed on

pages 189-192 of Chapter 7 while the other three models are

discussed at the beginning of Chapter 8.

62

CHAPTER 3: SURVEY OF QUEUEING NETWORK RESEARCH

EARLY DEVELOPMENTS

Output Distributions

A queueing network is a collection of service facilities
arranged in such a way that customers must proceed from one
to another in order to fulfill their service requirements.
The essential feature of such systems is that the output of
one service facllity may make up part or all of the input to
another service facility. Thus some of the early research
in this area was devoted to determining the distribution of
the output of a single service facility.

Burke (11) studied the case of a single service facility
composed of an arbitrary number of parallel exponentlal'
servers. Under the assumption of Poisson arrivals, Burke
proved that the steady state departure process 1s of the same
form as the arrival process (i.e., Foisson). He also showed
that the departure process is independent of the queue size
left by a departing customer. Reich (67) showed Burke's
first result is not true in general by constructing a spe-
cific example in which the arrival and departure processes
differ at equilibrium. Finch (38) examined the generality
of Burke's second result and was able to show the the depar-
ture process is independent of the queue size left by a
departing customer if and only if service times are exponen-

tial and infinite length queues are permitted.

63

With the work of Reich and Finch posing potential
complications to any general analysis, most studies of
queuelng networks have been restricted to the case in which
individual service times are exponential and arrivals to
the network, if any, are Poisson. In this case the entire
system can be treated as a continuous time Markov process
and the steady state distribution may be obtained by solving
the appropriate set of linear equations. The remainder of
this Chapter will be devoted to examining solutions obtained

by this method.

Analysis of Specific Network Types

At this point it is useful to introduce a schematic
notation for representing queueing networks. Let empty
circles denote service facllities having exponential service
times, let rectangles denote the location of queues, and let
the flow of customers through the network be indicated by
arrows. Thus Figure 3-1 18 intended to represent a network

made up of two queues in series.

— s FO————FO—>

Figure 3-1

Two Queues in Series

The arrow entering the network represents customers arriving

according to some stationary Poisson arrival process and the

64

arrow leaving the network at the right represents departing
customers. Unless otherwise specified it will be assumed
that the means of the various arrival and service processes
are arbitrary and that there are no bounds on the maximum
queue lengths. This particular network, consisting of only
two queues, was examined in an early paper by O'Brien (63).
Expanding the notation, let a circle containing the
letter P denote a service facility made up of an arbitrary
number of identical exponential servers operating in parallel.
That is, if there are p exponential servers in parallel each
having mean rate u, then the service facility provides
service that is exponential with mean rate u-min(p,k) where
k 1is the number of customers present at the facility. Figure
3-2 provides an example of this notation. As in Figure 3-1
no assumption is made about the relative number or rate of
the servers at each facility. Networks of this type with an
arbitrary number of queues were studied by R.R.P. Jackson

(49).
@ — H® 13

Figure 3-2

Parallel Servers

Continuing to expand the notation, let a circle with
more than one arrow leaving it indicate customers may leave

that service facility by taking any one of a number of paths.

65

For example, in Figure 3-3 a customer leaving service facillity
3 can return to service facllities 1, 2 or 3, or can leave

the network entirely.

1 2 3

Figure 3-3
Terminal Feedback

Whenever such branch points appear in a network diagram
it will be assumed that each particular path has assoclated
with it a fixed probability and that, whenever a customer
leaves the service facllity, he selects ﬁhe next path accord-
ing to these probabllitlies independently of the choilces that
he or other customers may have made in the past. Naturally
the sum of the probabllities assoclated with the different
paths leaving a single service facllity must be equal to one.

Figure 3-4 provides another example of multiple paths
leaving a service facility. For notational simplicity only
a single line is shown leaving each faclility and the branch-

ing into separate paths appears further on.

el d sl

Figure 3-4

Internal Feedback

66

Using these notational conventions the general network
model of J.R. Jackson (47) 1is illustrated in Figure 3-5.
There are an arbitrary number of service facilities (three
are shown) , each facility has an arbitrary number of
identical parallel servers, and a customer may proceed to
any service facility in the network after completing service
at any given facility. 1In addition, new customers may
enter the system via any queue and may leave the system at

the completion of service at any facility.

\

Figure 3-5

Arbitrarily Connected Queueing Network

Limitations on Network Capacity

In the work of O'Brien, R.R.P. Jackson and J.R. Jackson
presented thus far, no limits are placed on the lengths of
any of the queues appearing in the network diagrams. One

method of imposing such 1limits i1s to construct a closed net-

67

work having the property that customers can neither enter
nor leave. If such a network i1s then initialized with a
given number of customers, these customers will circulate
through the network indefinitely so that the number of
customers in the network will not only be bounded but will
in fact be constant.

Koenigsberg (58) introduced a closed system of a par-
ticularly simple form which he termed a cyclic queue.
Koenigsberg's model is represented in Figure 3-6 for the
case in which there are four service facilitles. Actually
Koenigsberg solved this model for an arbitrary number of
service facilities and an arbitrary number of circulating
customers. It is assumed in Figure 3-6 that each queue in
the network has capaclity equal to the total number of cir-

culating customers.

= T © e TR e T L B W

Figure 3-6

Cyclic Queue

Finch (37) adopted a slightly different approach by
considering situations in which the total number of customers
is bounded by some value but not restricted to always remain

equal to that value. Finch analyzed both the terminal feed-

68

back networks of Figure 3-3 and the internal feedback net-
works of Figure 3-4. 1In both cases Finch assumed that the
arrival process shut down whenever the total number of cus-
tomers in the network reached some upper bound N. That 1is,
rather than assuming a stationary arrival process Ffinch
assumed the arrival process was a function of K, the total
number of customers in the network. For K <N the arrival
process was assumed to be Folsson with constant mean rate,
and for K =2 N the arrival process was assumed to be FPoisson

with mean rate zero (i.e., no customers arrive).

69

GENERAL NETWORK MODELS

The Work of J.R. Jackson

In an impressively comprehensive paper J.R. Jackson
(48) combined his earlier work with some ideas from Finch
(37) and then went on to develop a solution technique for
an extremely wide class of queueing networks. Jackson begins
by consldering the totally general model of inter-connecting
paths illustrated in Figure 3-5. To this he adds Finch's
notion of allowing the mean arrival rate to be a function of
K, the total number of customers in the system. Working
under the assumption of a non-stationary Polsson arrival
process, Jackson then directs his attention to the case where
the mean arrival rate 1s an arbltrary function of K. In con-
trast, Finch considers only the case where the mean arrival
rate 18 given by a simple step function equal to u if K<KN
and equal to 0 1f K=2N.

In the networks considered by Finch customers may only
arrive at a single point as 1llustrated in Figures 3-3 and
3-4. Jackson on the other hand must contend with the possi-
bility of customers arriving at any point as 1llustrated
in Figure 3-5. To deal with this situation Jackson first
assumes that the total arrival rate for the system 1s some
arbitrary function ;K(K). He then assumes that arriving
customers enter the system at service facllity n with fixed

N

probability r(o,n) (> _ r(0,n) = 1 where N is the number
n=1

70

of service facilities in the system). Thus the mean arrival
rate to the nEn service facllity in Jackson's model 1is
A(K).-r(0,n).

Jackson also generalizes the notion of parallel servers
at a service facllity to include arbitrary exponential ser-
vice. That 18, when k customers are present at service
facllity n Jackson assumes only that the service time 1is
exponentially distributed with mean rate u(n,k). As pre-
viously pointed out, if the nil service facility consists
of p exponential servers in parallel each having mean rate
U, and i1f there are k customers present at the facility,
then the service time is distributed exponentially with
mean rate uﬁmln(p.k). Jackson's more general approach is
to simply specify the mean rate by some arbitrary function
u(n,k).

In addition to this synthesis and generalization of
earlier work Jackson also introduces new mechanisms into
his model which allow him to include closed networks such
as those considered by Koenlgsberg as a speclal case. The
first mechanism is termed triggered arrivals. In a system
with triggered arrivals it is assumed that there exists a
positive integer K* which serves as a lower bound on the
total number of customers present. That i1s, Whenever the
total number of customers in the system 1s equal to K* and

a customer exits, a new customer is immediately injected

into the system. The probability that this new customer

el

will arrive at service facility n is equal to r(0O,n) for
n=1,2,...,N . Clearly, if a triggered arrival system is
constructed so that A(K) = 0 if and only if K 2 K* then
the resulting system can be interpreted as a closed queueing
network with K¥ circulating customers. Koenigsberg's model
thus becomes a highly specialized example of such a system.

Another mechanism which Jackson treats in this paper
is known as service deletion. Under this mechanism it 1is
assumed that associated with each service facility there is
a positive integer k; which acts as an upper bound on the
number of customers that can be present at the facility.
If the number of customers present at service facility n
is equal to k; and a new cutomer ar;ives. the customer
currently being served 1s immedlately ejected and then pro-
ceeds to his next destination according to the same set of
probabilities that govern normal departures. Since service
times are exponentially distributed and thus "memoryless",
it 1s equivalent to assume in this case that the arriving
customer, rather than the customer being served, is the one
that i1s ejected from the service facllity. Jackson thus
provides one possible mechanism for limiting the size of
queues in a network.

It should be pointed out that Jackson does not present
explicit closed form solutions for the queueing networks he
considers. Instead he presents a solution technique for

solving the large set of homogeneous linear equations asso-

72

clated with the Markov process which characterizes the net-
works. The solution technique, which is is more fully ex-
prlained in Appendix B, involves solving a considerably
smaller set of linear equations and then constructing the
solution to the larger set of equations in a certain well
defined manner. This greatly reduces the effort involved

in solving specific problems and, in addition, demonstrates
the existence of a number of structural properties which all
solutions must possess. However Jackson's work does not
entirely supersede the explicit closed form solutions ob-

tained by Koenigsberg, Finch and others.

The Work of W.J. Gordon and G.F. Newell

The work of Gordon and Newell (41) 1llustrates how a
particular subcase of Jackson's work may be profitably ex-
plored. Gordon and Newell consider queueing networks with
completely general inter-connecting paths as 1llustrated in
Figure 3-5, except that only closed systems are examined so
there 1s no possibility of customers either arriving or
departing.

In a sense this model represents a natural generaliza-
tion of closed cyclic networks considered by Koenigsberg,
whereas Jackson's model (48) represents a generalization of
the open network model (47) he considered earlier. The
mechanism of triggered arrivals then allows Jackson to in-

clude closed networks such as those of Koenigsberg as a

7

speclal case. Desplite 1ts elegant generality this treatment
is somewhat cumbersome, and 8o in practice it is far simpler
to follow the notation and equations of Gordon and Newell
when solving problems which are initially defined in terms

of closed networks. The solution technique presented in
Appendix B closely parallels the derivation which Gordon and
Newell present.

After re-deriving Jackson's equatlona* in a specialized
form Gordon and Newell go on to explore the asymptotic
behavior of closed systems as the number of circulating
cugstomers becomes very large. This aspect of theilr work is
entirely new and lends further interest to the paper.

In a second paper published the same year Gordon and
Newell (42) consider a network of cyclic queues of the type
1llustrated in Figure 3-6 with the additional restriction
that the maximum queue length which can bulld up at a service
facility 1s less than the total number of circulating cus-
tomers. When a queue reaches its maximum permissible length,
it is assumed that the service facllity which feeds into that
queue becomes blocked or in effect shuts down. In contrast
the service deletion mechanism of Jackson (48) would imply
in this case that, when a queue reached its maximum length,
customers departing from the service facility which feeds

into that queue would simply bypass it and proceed directly

#Gordon and Newell were unaware of the earlier work of
Jackson (48) as indicated in (43).

74

to the next service facility in the cycle.

The induced blocking mechanism considered by Gordon and
Newell is thus quite different from the service deletion
mechanism of Jackson. Unfortunately the equilibrium equa-
tions for this problem turn out to be rather complex, and as
a result explicit closed form solutions are obtained only
for the case of a cyclic network of two queues. In addition
the limiting behavior of such systems when the number of
customers is small (i.e., when there is a low probability of
a queue reaching its maximum length) and when the number of
customers is large (i.e., when there is a high probabllity
of a queue reaching its maximum length) 1is explored.

The problem of limited size queues ﬁith induced block-
ing also proved difficult to treat in the case of queues in
series as 1llustrated in Figure 3-1. Hunt (46) considers
such a system but is able to derive solutions only for the
case of two queues with the second having arbltrary finite
capacity,and the case of three queues with the second and
third having a capacity of one. The rather limited success
of these efforts suggests that this is a difficult problem
to treat in general. However the close parallel between the
induced blocking mechanism and the behavior of computer
systems when memory becomes saturated should provlde strong

motivation for additional research in this area.

i

CHAPTER 4: INTRODUCTION TO THE
CENTRAL SERVER MODEL

SPECIFICATION OF THE MODEL

Individual Program Behavior

One method of constructing a mathematical model of a
complex physical system 1s to first analyze a particular
component of the system in relative isolation and to then
gradually introduce additional detail. 1In the case of multi-
programming systems 1t 1s convenient to begin this process
by analyzing the behavior of an individual program running
in a slightly simplified multiprogramming environment. It
will be assumed that programs enter this environment by
being loaded into main memory from a device such as a disk
or card reader. Once loaded, a program presents the CPU
with a sequence of instructions to be executed. Scattered
through this sequence are a number of I/0 transfer requests
which, when encountered, cause the CPU to suspend instruction
processing for the duration of the transfer. After a trans-
fer has been completed a new interval of CPU processing
begins, then another interval of I/0 processing, and so on
until the CPU eventually encounters a symbolic STOP state-
ment. This terminates the program and causes it to exit
from the system.

Now consider the effect of a multiprogramming environ-

ment on the preceding description of individual program

76

behavior. Since all multiprogramming environments are
designed to maintain a number of programns 1n the active
state at all times, it is possible for a program in such
an environment to request service from a processor at a
time when that processor is already busy serving some
other program. Such overlapping requests for service will
cause queues to build up from time to time at the various
processors in the system.

Taking this additional consideration into account,
program behavior 1s thus characterized by a period of
initial loading followed by alternating intervals of CPU
processing and I/0 processing with each processing interval
possibly preceded by a queueing delay, and eventually a
final perlod of CPU processing after which the program
exits from the system. Thls general behavior pattern is
represented schematically in Figure 4-1 for a system in
which programs are initlally loaded from a card reader and
may then carry out I/0 processing on a disk, magnetic tape
and data cell. Note that the behavior of any program in
such a system can be described by a continuous path through
this diagram beginning at the card reader and ending at the
exlt arrow. The exact structure of the program behavior
path, as well as the amount of time required to service
each processing request, will vary from program to program
and is left unspecified. The time a program spends walting

in queues depends not on the program itself but on the

77

possible
walt 1in

possible
walt in
possible i
wait 1in %
“'——% queue CPU] possible
/ wailt in
- "/
\ 4
program
exits ARD
from RgADER
system
Figure 4-1 Program Behavior
[queue | DISK
.-:‘_:\
NEW PROGRAM MAG
: - queue TAPE
™, ; /
\\ -
queue CPU /- SR S
o DATA
CELL |
CARD
READER

Figure 4-2 Memory Partition Behavior

78

activity of the other programs in the system. This too is
left unspecified.

The circles labeled DISK, MAG TAPE and DATA CELL in
Figure 4-1 are not intended to represent individual devices.
Ingstead they represent individual peripheral processors, each
capable of controlling a number of physical devices but each
having the property of being able to carry out only one I1/0
transfer at a time. Thus a peripheral processor might corres-
pond to a data channel combined with a device controller
which 1s connected to several disk or magnetic tape drives.
Note that even though each program normally has 1ts own set
of dedicated tape drives, 1t is presumed in Figure 4-1 that
there 18 only one data channel/controller for all the tape
drives in the system. Hence the magnetic tape processor 1is
depicted as a shared resource subject to queueing delays

in the same way that the disk and data cell are.

System Behavior

The model of program behavior represented in Figure 4-1
can be converted to a model of system behavior for an entire
class of multiprogramming systems by making a few relatively
minor alterations. First of all, rather than considering the
processing requests generated by a particular program it is
instead necessary to consider the processing requests gener-
ated by a particular memory partition in a multiprogramming

system. This change affects the way in which program

79

terminations are represented. When a program encounters a
symbolic STOP statement it simply exits from the system as
indicated in Figure 4-1. However, the partition in which
the program resided does not exit but is instead loaded
with the next program awaiting execution. Thus, from the
point of view of the memory partition, the termination of
one program is followed by the loading of another.

In order to represent this phenomenon let the activ-
ity of a particular memory partition be described by a marker
moving about the diagram in Figure 4-2. The location of
the marker will correspond to the state of the program in
the assoclated partition: eilther walting in a queue or re-
celving service from a processor. When the CPU encounters
a symbolic STOP statement and the program terminates, assume
that the marker moves out along the NEW PROGRAM path leaving
the CPU. The marker will then immediately return to the
CPU queues, this time representing the first CPU process-
ing request of the next program. Actually the first few
processing requests the marker generates at this point will
not correspond to the next program itself but rather to the
processing activity required to load the next program into
the partition. However, this processing activity will be
regarded as a part of the next program for purposes of
this discussion.

The model can now be extended to include the behavior

of an entire multiprogramming system simply by assuming

80

that each memory partition in the system is represented by
a different marker moving about the diagram in Figure 4-2.
Note that only one marker can occupy a processor at any
time, but any number of markers can occupy the queue assoc-
iated with a given processor. Under these conventions the
movement of markers along the paths of Figure 4-2 can be
seen to correspond in a natural way to the operation of an
actual multiprogramming system.

Multiprogramming systems which can be represented in
this manner must satisfy certain restrictions. First of all,
the number of main memory partitions in the system being
modeled (i.e., the degree of multiprogramming) must be
constant since there i1s no way of either adding or deleting
markers in Figure 4-2. 1In addition, an individual program
cannot undergo concurrent processing on more than one
processor at a time because only one marker is associated
with each program. Finally, the system must be operating
under conditions of full load since it 1s assumed that there
i3 always a new program ready to begin processing when a
currently active program terminates. Note that these
restrictions do not interfere with the primary objective
of the model which is to represent cases in which a number
of active programs are present in a single system at the
same time. Since this state of affairs is usually regard-
ed as the most significant aspect of any multiprogramming

environment, the three restrictions Jjust cited do not

81

prevent the model from being of both practical and

theoretical interest.

Behavior Parameters

Figure 4-2 cannot be regarded as a complete description
of a multiprogramming model because it does not specify the
nature of the paths that markers follow as they move about
the diagram or the amount of time that markers spend at each
processor they encounter. These two factors correspond to
the sequence of I/0 processing requests generated by a
program and the amount of time necessary to service individ-
ual CPU and I/0 processing requests.

There are a number of ways in which the sequence of
I1/0 requests generated by a program can be specified. For
example, it is possible to observe an actual system over a
period of time, note in detail the path followed by each
program, and then include all this information in the model.
This representation would be entirely accurate but would
result in an unwieldy model since a vast number of param-
eters would be necessary to permit this information to be
encoded. It is thus essential to develop a more concise
representation of program behavior, even if this entalls
some sacrifice in the fidelity of representation of the
final model.

To see how this might be done imagine that an actual

gsystem is observed for some period of time, but assume that

82

the only information collected is the relative frequencies
with which various paths are selected by programs completing
CPU processing requests. A typical set of such data for

the system represented in Figure 4-2 is presented in Table
Lh-1.

Path Designation Relative Frequency
NEW PROGRAM path 1 in 20
Path to DISK 9 in 20
Path to MAG TAPE 5 1in 20
Path to DATA CELL 2 in 20
Path to CARD READER 3 in 20
Table 4-1

Relative Frequency with which Programs Completing CPU Pro-

cessing Requests Select Various Paths

To a certaln extent the program. behavior paths which
generated this data can be reconstructed by assuming in
Figure 4-2 that whenever a marker leaves the CPU its next
path is determined by probabilities which correspond to the
relative frequencies in Table 4-1. That is, assume that
each time a marker leaves the CPU the probabllity of 1its
selecting the NEW PROGRAM path is 1/20, the probability of

its selecting the path to DISK is 9/20, and so on. A system

83

operating in this manner clearly will, in the long run,
utilize its peripheral processors with the same relative
frequency as the observed system. In addition, individual
program behavior will exhibit considerable variability
since the total number of processing requests per program
and the sequence of processing requests within each program
are both determined by random factors. Thus, even though
the exact details of specific program behavior are lost
under theée agsumptions, a subsgtantial 1ink with reality is
maintained. Furthermore the number of parameters necessary
to specify program behavior is significantly reduced since
only the path selection probabilities need be supplied.

Specifying the amount of time a marker spends at each
processor is a more difficult problem. In aoctual multipro-
gramming systems the amount of service time per processing
request 1is likely to be a rather complex function which
differs from one processor to another. It is of course
possible to observe an actual system and empirically obtain
the distribution of service times for each processor. These
empirical distributions could then be approximated by con-
tinuous functions and the service time for each processor
could then be specified as a random variable having the
assoclated continuous distribution function.

There are two major drawbacks to this approach. First
of all, analysis of queueing networks of the type illustrated

in Figure 4-2 for arbitrarily distributed service times 1is

8l

almost certaln to lead to a mathematically intractable
situation. Second, and in some sense equally as important,
a set of continuous distribution functions fitted to some
arbitrary body of data would be an extremely awkward collec-
tion of parameters to incorporate into a model, especially
1f the effects of parameter variation were beilng explored
with the aim of generalizing to other systems. Thus, as in
the case of program behavior paths, it is again necessary
to seek a more concise and mathematically tractable repre-
sentation, even at the expense of sacrificing fidelity of
representation in the final model.

There are two features of the actual service time
distributions which seem especlally critical and which will
be incorporated in the model. The first 1s that each pro-
cessing request directed to a given processor 1s llikely to
require a different amount of time for 1ts completion. That
1s, the service times assoclated with a glven processor are
not all identical but instead vary from one request to
another. When these variations are averaged together K a
second important feature becomes apparent which 1s that the
average amount of service time per processing request is not
necessarily the same for each processor in the system.

Assume that the average amount of service time per pro-
cessing request is 1/u° for the CPU and 1/uJ for the jEE PPU.
From a mathematical standpoint the simplest way to incor-

porate these parameters into the model, while also including

85

variability in the individual service times of each processor,
is to assume that the service time per processing request for
the CPU 18 an exponentially distributed random variable* with
mean 1/uo and that the service time per processing request
for the 32 PPU 18 an exponentially distributed random vari-
able with mean 1/uJ. Note that it 18 not being asserted that
these exponential distributions provide an entirely accurate
representation of the actual service time functions, but

only that ihey include the most significant aspects of these
functidns. The point 1s that the model should not be judged
on the goodness~of-fit of the exponential assumptions, but
rather on the validity and utility of the insights which are
ultimately derived.

Summary Description of the Model
The final model, which 1s represented schematically in

Figure 4-3, may be described in the conventional terminology
of queueing theory as a closed queueing network of I+1 expo-
nential servers and N circulating customers. Customers
leaving the 03;-n (central) server proceed to the JEQ server
with probability P, (j=0,1,...,L) , and customers leaving
one of the L peripheral servers proceed directly to the

central server with probability one. The parameters of the

*Appendix A contains a detalled discussion of the most sig-
nificant features of exponentially distributed random vari-
ables.

86

N Circulating Customers

NEW PROGRAM Bl
po L]
ﬁ 4/1;\\l L4
T R0 .

Central

Server { P,

| L/

L

Peripheral
Servers
Figure 4-3

Central Server Model of Multiprogramming

87

system are:
N = number of circulating customers (i.e., degree of
multiprogramming)
L - number of peripheral servers
Py - Probabllity that a customer proceeds to the ytb
server after leaving the central server (j=0,1,
o wgdis)
u, - mean rate of the JEE server (J=0,1,...,L)
1/uJ is the average time required to complete a
service request on the ;)-'-‘-’--}l server, and the proba-
bility that a service request on the :)-t--’--}l server
has length £ T is
ST u, et at
0
For purposes of this discussion the class of queueing
networks which satisfy the preceding description will be
known as central server networks and the models based on
these networks will be known as central server models. The
okl (central) server in a central server network will be
referred to as the CPU and the JEE (peripheral) server in

a central server network will be referred to as the ;]-‘*-’--}l PPU.

88

ELEMENTARY PROPERTIES

Introduction

The primary reason for developing the central server
model of multiprogramming is to galn some understanding of
the nature of the queueing delays which arise in multipro-
gramming systems. Before analyzing this aspect of the model
certain other properties will be considered which are in a
sense more elementary in that they are independent of queue-
ing delays and can be derived without considering the steady
state distribution of customers in the network. These prop-
erties, which have to do with the distribution of the number
of processing requests per program and the total processing
time per program, will help to further introduce the model
and will also be of some practical use later in the analysis.
Table 4-2 (p. 98) provides a convenient summary of the main

regults of this section.

Digtribution of Processing Requests
To begin the analysis recall that each time a program

completes a CPU processing request the probability that the
NEW PROGRAM path will be selected 1is Po- Since selection of
the NEW PROGRAM path corresponds to termination of a program,
it 1s relatively simple to obtain the distribution of CPU

processing requests per program.

89

Suppose a program has just been loaded into main memory.
The probability that the program will make exactly one re-
quest for CPU processing is the probability that it termi-
nates (i.e., selects the NEW PROGRAM path) immediately after
completing its first CPU processing request. According to
the model the probability of this happening is | Similarly,
a program making exactly two requests for CPU processing
must select a path other than the NEW PROGRAM path after its
first CPU processing request - an event which occurs with
probability 1-po - and then select the NEW PROGRAM path after
its second CPU processing request. Thus the probability of
a program making exactly two CPU processing requests is
(1-p,)p, -

In general a program which makes exactly n requests for
CPU processing must select a path other than the NEW PROGRAM
path n-1 consecutive times and then select the NEW PROGRAM
path the nEh time. Since each path selection decision is
independent of all other decisions, the probability that
)n-lp

this event will occur 1is (l-p° and thus the expected

o "

number of CPU processing requests per program 1is

Eé? n p, (l-po)n-l = 1/po]
Obtaining the number of PPU processing requests per

program 18 a bit more complicated. Consider the probabllity

that a program makes exactly n requests for processing from

the JEQ PPU, and suppose for the moment that the total number

90

of CPU processing requests made by the program is C+l1. That
is, after each of the first C requests for CPU service the
program selects a path to a PPU - possibly the JEQ one -

and after the C+1§£ request the program terminates by select-
ing the NEW PROGRAM path. Note that if this program is to
make a total of n requests for service from the th PPU it

13 necessary to have C 2 n.

Conslder the first C requests for CPU processing. After
n of them the program must select the X2 PPU, and after C-n
of them the program must select a PPU other than the JEE.
Since the NEW PROGRAM path cannot be selected during this
period, the probability of selecting a PPU other than the
JEE is (l-po-pJ) and the probabllity of selecting the JEH
PPU remains pJ. It then follows that the probability of
making n consecutive requests for service from the jzﬁ PPU
followed by C-n consecutive requests for service from a PPU
other than the 339 is pJn(l-po-pJ)C-n.

Of course there is no reason in thils case to require
that the n requests for service from the ,1-13-}l PPU precede the
C-n other requests, and in fact any ordering of these C re-
quests is legitimate as long as exactly n requests for
service from the JEQ PPU occur. Since the total number of
such orderings 1is (g) and the probability of obtalning any

)CN | the probability

particular ordering is pJn(l-po-pJ
that there will be n requests for the JEh PPU somewhere

among the first C requests for PPU processing 1s

91

(g)pjn(l-po-pj)c'n. Since it 18 also being assumed that the
program makes exactly C+1 requests for CPU service, 1t 1is
necessary to multiply this expression by Po which is the pro-
babllity that the NEW PROGRAM path will be selected after the
next (i.e., the C+1§£) CPU processing request. Thus the pro-
bability that a program makes C+1 requests for CPU service
and n requests for service from the JEQ PPU 1is
po(g)pjn(l-po-pj
To obtain the probabllity that a program makes exactly

)C-n.

n requests for service from the .1-‘3-}l PPU irrespective of the
number of requests it makes for CPU service, it 1s necessary
to sum the preceding expression over all values of C for
which n requests for service from the JEQ PPU are possible
(1.e., for C2n). Thus the probability a program makes n

*
requegsts for service from the J-t-g PPU is

n
= (C_n Cen_ _ Pg_ Py ”
g (")pj Wangrey) g po+p1(;o+93> 2

#Equation 4-2 followa from the observation that
o0
:(g) <N 1/(1_x)n+1
C=n

for 0<x<l. This result can be derived by differentiating
both sides of the equation

2. ¢
> x° = 1/(1-x)
C=0

n times with respect to x and then dividing through by n!

92

From this expression it is possible to obtain the expected

number of requests for service from the jzh PPU as

n
e Py pj
EE: = PO+PJ<;O+P;> - pJ/pO S5

Note that the summation in equation 4-3 begins with n=0

since it 1s possible for a program to make no requests for
service from the JX2 PPU. On the other hand the summation
in equation 4-1 begins with n=1 since each program must make
at least one request for CPU processing.
One of the implications of equation 4-3 is that the
total expected number of PPU processing requests per program
L 1 <& 1 1

is ‘T:Z].PJ/P°=;;§PJ=§(1-PO) o il Lol
This makes sense intuitlively since the total expected number
of CPU processing requests per program 1s 1/po and since, 1in
any program, the number of PPU processing requests 1s one less

than the number of CPU processing requests.

Distribution of Total Processing Time

Now that the distribution of the number of processing
requests per program has been obtained for each server 1t
is possible to obtaln the distribution of total processing
time per program. Again it is simpler to begin with the CPU.
Clearly the probability that the total CPU processing time

per program 1s less than or equal to t is the probability

93

that a program requires exactly one CPU processing interval
times the probability that this interval is less than or
equal to t plus the probability that a program requires
exactly two CPU processing intervals times the probability
that the sum of these two intervals is less than or equal to
t and so on. If Dn(t) is the probability that the sum of
n CPU processing intervals is less than or equal to t and
DT(t) is ;he probability that the total CPU processing time
per program is less than or equal to t, then the preceding
sentence may be expressed more concisely as
)
Dp(t) = 3 _ P, (1-p,)" 1D, (t) 4-5

Taking the Laplace=Stielt jes transform of both sides,
- n-1
(8) = > p (1-p)" "L, (t)
LDT 1 ° o Dn

Since the CPU processing intervals are independent and
identically distributed random variables, it follows from
one of the elementary properties of Laplace-Stieltjes
transforms that

Lp () = (Lnl(a))n

Hence
Ip (8) = 3 po(x-p°>n‘1(LD1(s)>“

n=1

P, LDl(s)

1 - (1-p,) LD1(8)

94

Since CPU processing intervals are exponentially distributed
with mean 1/uo

_{t -u_X
Dl(t) —go u, e o dx

0

-st
Thus Lj (s) =So e le(t)

1
=f% ety e Wl at = "o
o o uo+s
Substituting, P uo
o
LD (s) = u,+s = UsPo b6

% u uopo+s

1 -~ (1-p)

o’'u _+s8
(o]

As can be readily verified, the inversion of equation 4-6
yields
t -u_p. X
Dp(t) =So u_p, e “oPo™ dx
That 1s, the total amount of CPU processing time per pro-

gram 1s an exponentially distributed random with mean

YoPo
A similar argument can be used to determine the distri-
bution of the total amount of processing time per program on
the jX8 PPU. The major difference is that it is now possible
-~ with probability p_/(p +pJ) - for a program to make no
requests for processing on the _11:-Q PPU during the course of
its execution. Hence the formula corresponding to equation

k-5 for the X2 PPU 1s

oo ‘p
Dplt) = e (237 5 o) 4=7
! P +pJ Zp+p3p+p3) =

95

Note that when equation 4-7 is evaluated at t=0 the result-
ing probability value is po/(po+pj)- This is the probability
that the total processing time per program on the JEE PPU 1is
equal to zero. Hence the probability that the total pro-
cessing time is less than or equal to t always includes the
term po/(po+pJ) 5

Taking the Laplace-Stieltjes transform of equation 4-7

P r, [py\"
oy o . |
(o) = g3+ ﬁ?rpo"%(%*%) Ly (8)

n
s P P
- > e o (8)
n=0 p°+pj(§o+p3 LDI °)

Since service intervals on the JEE PPU are exponentially
distributed with mean 1/“3' it follows that

D, (t) = Sg u, e"13% ax

e
and LDI(S) = uyts
pO
Po*P,
Thus () =
"Dy ' g =l 2
po+pJ uJ"'B

96

ujp°+p°s

ujp°+p°s+sz
]
- Py p0+pJ s Py
+ +
Py PJ Pgul - Py PJ
Py PJ
Inverting, t J*o .
D u4p P.+p D
D,(t) = J Jo o707y 4y 4+ B B
T Po*Py Jo Po*Py PotP;

Put into words, equation 4-8 expresses the fact that the
total processing time per program on the .12-}l PPU 1s zero with
probability po/(p°+pj) and, with probability pj/(po+pj) . 18
exponentially distributed with mean (po+pj)/(ujpo)' Thus

the expected processing time per program on the jgh PPU 1s

Py Po*Py . P . _ P
PotPy U4P, PotP; u 4P,

The results derived in this section are summarized in
Table 4-2. There is a sense in which these results should
not be considered as consequences of the central server
model but rather as additional assumptions about program
behavior which are implicit in the model. To elaborate upon
this point, recall that the underlying purpose behind the
central server model is to gain insight into the nature of

the queuelng delays which arlise in multiprogrammling systems.

97

JojAByeg WBIBOIJ BUTUIOOUO) S3TNS9Y POATJIe(

2~ eTqel

mexdoxd aed
QWT] 90TAIIS
18303 pej3oadxy

B R e 1Y A AW LY it 6 Lt ot lﬁl)‘n.qloﬁ...'lL.

l 5 81 meadoxd
Jod dWY3 ©07AJIIE
18303 3%yl £3711198Qq0Id

mex3oxd ® ug
sasonboax 9ogpAISS8
Jo Jequmu pajoadxy

ﬂﬁ+om
%4

Fa4%
bq

o (o}
roul d-1)%

wexdoad ®
uy s3senbex ed0jaAxes U
£130ex9 JOo £37TTQeqoxd

ndd mwﬁ ey3 xo4

ndd 3y3y xod

98

Instead of applying the model to this problem, the work of
this section has been devoted to studying the behavior of
programs operating in systems which satisfy the basic assump-
tions of the model.

Now, the basic assumptions of the model regarding pro-
gram behavior were assumed to be sufficlently realistic to
permit the model to be of value in exploring the effect of
queueing delays on system performance. However, this does
not imply that these assumptions are sufficiently realistic
to permit the model to be of value in further exploring
program behavior itself. Hence these derived results should
not be interpreted as intrinsically useful information about
program behavior in actual systems. Instead they should be
regarded as additional constraints on program behavior which
systems represented by the model must to some extent satisfy.
This point 1is certainly not a major one, but it may help to
clarify the relationship between this section and the remain-
der of the thesis.

99

CHAPTER 5: THE STEADY STATE DISTRIBUTION
AND ITS PROPERTIES

ANALYTIC EXPRESSIONS

Derivation of the Steady State Distribution

Steady state distributions were discussed in general
terms in Chapter 2. Chapter 3 then reviewed a number of
specific qpeuelng networks for which steady state distribu-
tions have been explicitly obtained. Central server networks
were not included in this discussion since the literature
contains no specific references to networks of this type.
However, central server networks fall within the general
class of queueing systems analyzed by Jackson (48) and
Gordon and Newell (41), and hence it is possible to use the
solution technique developed by these authors* to obtain
the steady state distribution for this particular network
type.

To apply the solution technique outlined in Appendix B
to a specific queueing network it is first necessary to
specify the matrix P = (pij) where Py is the probability
that a customer leaving the 159 server Qill proceed to the
JEE server. For central server networks the matrix P is

defined as follows:

*This technique 1s reviewed in Appendix B.

100

Pb Py P PL
0 o 0
P = o o . 0 Bt
1 0 o .4

The next step is to determine the solution of the

equation y = y.P (1.e., equation B-7 of Appendix B).

Given a matrix of the form specified in equation 5-1, 1t 1is

easily verified that the vector ¥ = (J_sPy¥_ ePp¥ e---sP¥,)

satisflies the equation P = z-P for any value of P In
particular the vector y = (uo.pluo,pzuo....,pLuo) satis-
fies this equation.

Next let P(no.nl.....nL) denote the steady state prob-

ablility that there are nJ customers at the JEE server in
a central server network. It then follows immediately from
equation B-8 that
L
P(n_,ny,...,n;) = 56@7-11_ (yJ/uJ)nJ

J=o0

L
= atny L1 (o™ i

where G(N) 1s a normalizing constant. Note that the multi-

plicative index j can begin at 1 since yo/uo = uo/uo = 1.

The normalizing constant G(N) 1s selected so that the

sum of all the P(no'nl""'nL) will be equal to one. Since

101

L

any value of P(n,,n,,...,n.) for which > n, = N repre-
0’1 L 5=0 J
sents a possible state of the system, it follows that

L
:E:thN

3=T

Note that neither n, nor p appears on the right hand
sides of equations 5-2 and 5-3 although it is of course

L L
understood that n_ = N-Z n and P. =1 = E P.
o J o J
=1 J=1

Equations 5-2 and 5-3 are also valid for central server
networks in which the NEW PROGRAM loop is missing since

such networks simply correspond to the case in which
L

P, =0 and 2 _ Py = 1.
J=1

Part of the value of central server networks is the
extreme simplicity with which the solution to the equation
y=3-P can be expressed. This simplicity makes it
possible to analyze the steady state distribution in detail
and to derive a number of related properties which are
valid for all central server networks but which are not
necessarlly valid for the more general networks studied

by Jackson and by Gordon and Newell. The next few sections

102

deal with some of these properties.

Processor Utilization

Let AJ

jEE processor is active (i.e., not idle).

processor is active if and only if ng 2 1

AJ = nE elP(no.nl.....nL)

J

In particular,
Ao = E P(no.nl.....n.L)

n_ =21
o

1%

L
Since B, 1 1implies E n, £ N-1

I=1
A, = E P(no.nl.....nL)
o
n,&N-1
=1 1

1 L / n
= E W -11:[1_ (pluo ui) 1
L

Ez:hiﬁN-l
i=1

G{(N-1
G(N

103

denote the steady state probability that the

Since the jiI

5-4

For m=1,2,...,L

AJ = EE;&P(no,nl,...,nL)
J

L
1 n
= E GINY 1]=l1 (pyu /)1
L
E niéN & njel
1=1

Factoring out the quantity pJuo/uJ which appears in each

term of the sum as a result of the fact that n =21 ,

J
1 pjuo L n
Ay = ENY u, E E(piuo/ui) 4
L
:E:hiéN-l
i=1
” P3Uy G(N-1
u G(N
J
.
u o)
J
Thus
AouopJ = AJuJ 5=5

Conservation Laws

Equation 5=5 has an interesting intuitive interpreta-
tion. Suppose that a central server network in equilibrium
is observed for some interval of time of length T. Then

the expected amount of time that the central server is

104

active during this interval is AOT. Since the average
amount of time required to process a customer through the
central server 1s 1/u°. the expected number of customers
processed by the central server during the interval 1is
AOT/(l/uO) = A, Tu . Next note that each customer processed
by the central server has probabilility pJ of belng channeled
to the JEE peripheral server. Thus the expected number of
customers channeled to the JEQ peripheral server during the
interval 1is AoTuopj'

On the other hand the expected amount of time that
the JEQ peripheral server is active during the interval is

AT, and so the expected number of customers processed by

J
that server during the interval is AJT/(l/uJ) = AJTuJ. If
T is large and the system is in equilibrium, then conserva-
tion of flow considerations would indicate that the number
of customers channeled to the :,IP-g peripheral server should
equal the number of customers processed by that server. In
other words AoTquJ should equal AJTuJ . This is equiva-

lent to stating that Aouop = AJuJ. Since equation 5-5

may be obtained in this mann:r using conservation of flow
considerations, this equation will be referred to as the
Conservation Law for the remalnder of this discussion.

In order to discuss one of the applications of the
Conservation Law it is necessary to introduce the notion of

the relative saturation of a server in a central server net-

work. Essentially, relative saturation 1s the ratio between

105

the relative load on the server and the server's processing
speed. 1If the relative load on the central server is defined
as 1, then the relative load on the ,1-1—;h peripheral server
will be pJ since, over a long period of time, the ratio of
the number of customers processed by the central server to
the number of customers processed by the JEn peripheral
server will approach l/pJ. Hence the relative saturation
of the JEE peripheral server will be defined as pj/uj and
the relative saturation of the central server will be de-
fined as 1/uo.

Next note that the Conservation Law can be reformulated
as follows:

As g Ag . o

= =

1/u, py/uy pp/uy Py

5-6

It is immediately obvious from equation 5-6 that the most
highly saturated server 1s always the most highly utilized
server and that equally saturated servers will be equally
utilized. In fact utilization is directly proportional
to relative saturation. It 1s also true that the most
highly saturated - and highly utilized - server has the
largest expected queue, but the proof of this fact will be
deferred until later.

Before discussing the issue of expected queue lengths
it is useful to introduce a powerful generalization of the
Conservation Law. Begin by defining Ag as the steady state

probability that there are k or more customers present at

106

the j¥ gerver. Note that A° = 1 and, amccording to the

J
sarlier definition of A, Ag = A,
Now Ak = P(n_,n n,)
? ° o. 1."'. L

2k
"o

L
Since T 2 k is equivalent to > n, & N-k ,
i=1

L
k 1 n
By = E G(N) 1]=|1 (pyuy/uy)s
L
> n,&N-k

i=1
GgN-kl
- G(N 5"7
FOI‘ J‘l.Z..-..L

k
A‘1 = E P(no.nl.....nL)
L

E n,&N & n .,k
1-11 J

L
1 n
= z GINY 1'-'1 (pyuy/uy)t
L
> nléN & njék
1=1

Faotoring out the quantity (pJuo/uJ)k which appears in each

term of the sum as a result of the fact that n‘1 2 k ,

107

k 1 P v, A L n
AJ = G(N) uJ o 1|=I1 (Piuo/ui) i
= L
> n,&N-k
i=1
1k
_|P3%| G(N-k)
u G(N)
J J
p su e k
o
===L—=LuJ | 4 5-8

Equation 5-8 may be thought of as a generalization of
equation 5-5 since the latter can be derived from the former
by setting k=1. For this reason equation 5-8 will be re-
ferred to as the Generalized Conservation Law. Note that
once G(0),G(1),...,G(L) are known, equations 5-7 and 5-8
? The Aﬁ can then be

ugsed to determine the marginal distribution of customers

can be used to determine all the A

at each server since the probabllity that there are exactly

k k+1
g = By

k customers at the JEE server 1s equal to A

Queue Lengths

Define QJ to be the expected number of customers
present at the jEE server at equilibrium. QJ may be in-
terpreted as the expected length of the queue at the jEn
server as long as queue length 1s understood to include

the customer eurrently being served. Since Aﬁ - A§+1 is

108

the steady state probablility that there are exactly k cus-

tomers at the jEﬂ server for k=0,1,

and AN is

«oN=1 3

the steady state probability that there are exactly N cus-

tomers at the JEE server,

Y

For Jj=0,

For J=1,2,

it follows that

N-1

% k(Al‘; - AI;"']‘) + N~Al‘q1 5-9
N % N

ZkAJ - 2> (k 1)A]

k=0 k=1

N

S__ Ay

k=1

N

5 s

k=1

il the Generalized Conservation Law implies

N
k=1

QJ'Z(pJu /u)

Hence, assuming G(0),G(1),...

(pu_/)kGN-k
kz Piel™ G(N)

+G(N) have been determined,

the expected queue length for each processor can be obtained

109

by evaluating the polynomial

N
a(x) = > __ X Qé%§§l 5=10

k=1

at the appropriate value of x. That 1s, Q = q(1) and
QJ = q(pJuo/uJ) for J=1,2,:::sD

Since all the coefficients in the polynomial q(x) are
positive,

p p
T & e alpu/uy) > alpu /) B QY Q

3 k
Al 1o 2 1> /
80 uo uJ = pJuO uJ

<> q(1) >q(pJu°/uJ) & Q> Q.1

Thus the most highly saturated - and most highly utilized -
server has the largest expected queue, and equally saturated
servers have equal expected queue lengths.

The polynomial expression for QJ presented in equation
5-10 is quite useful for computational purposes and also
makes the assoclation between relative saturation and expected
queue length immediately apparent. However it i1s necessary
to develop an alternative representation for QJ in order
to expedite some of the computations in Chapter 6. Note

first that for 1«)3 «1L,

110

k k+1

k k+1
Thus k(AJ - AJ)

Also A

=z

8o that N-A

Substituting into

QJ =

E P(no.nl.....nL)
L

En&N&:n!:k
i=1 ! J

= nJ E P(no.nl.....nL)

L

n,«N & n,=k
> n, ;
i=1

L ——

= 2 P(no.nl.....nL)

L
E niéN & ngN
i=1

= n, E P(no.nl.....nL)

S 6
n, &N & n,=N
=1 1 J

equation 5-9 ,

N
E;g n, E P(n_engye...onp)

g
n,&N & n_ =k
1=1 1 J

= ; nJ P(no.nl....,nL)

111l

L
n, -rr'(piuo/ui)ni 5-11

1=1

i

. |
= G(N)

Me

ni-

[
il
[y

This alternative representation for QJ will be exploited

further in Chapter 6.

System Performance

Since central server networks are being consildered
primarily as models of batch processing systems, it is
natural to define system performance in terms of the average
number of Jobs processed per unit time. This quantity is
comparatively easy to compute for any central server net-
work. Recall that if a central server network 1s observed
for an interval of time of length T, the expected amount of
time that the CPU will be active during this interval 1is
AOT. Since the expected amount of CPU processing time per
program 1is 1/(u°po) by Table 4-2, the expected number of
complete programs processed during the interval 1is
AOT/(1/(uopo)) = AoTuopo. Hence the average number of
programs processed per unit time is AoTuopo/T = Aouopo.
This quantity, which will be known as the processing
capaclity of the network, will be used in subsequent sectlons
of this thesis as the measure of system performance.

The expression for processing capaclity may appear to

be heavily welghted in terms of CPU performance, but in fact

112

this 18 not the case. To demonstrate this point note that
the expected amount of time that the JEQ PPU 1s active during
an interval of length T is AJT. Since the expected amount

of processing time per program on the jEn PPU 1s pJ/(quo)

by Table 4-2, it is also possible to express the expected
number of complete programs processed during interval T as
AJT/(pJ/(quo)) = AJTquo/pJ . Hence the expected number
of programs processed per unit time according to this
analysis is (AJTquo/pJ)/T = Ajujpo/pj . But AJquo/pJ =
Aouopo by the Conservation Law. Thus the processing capacity
of a central server network has no special connection with
CPU performance and can be represented in equivalent form in
terms of the performance of any other system processor.

As a final point it should be noted that under the
current definition processing capacity can only be used to
compare the performance of systems which are processing
identical populations of programs. All the examples that
will be considered in this thesis comply with this require-

ment.

Bottlenecks

The term "bottleneck" is generally applied to a system
component whose behavior 1s seriously degrading the perform-
ance of an entire system. Despite the widespread use of
this term, 1t is not immedlately obvious how to measure the

degradation in system performance that is due to the behavior

113

of an individual component. One possible approach is to
calculate the effect on system performance of a small
increase in the performance of the component in question.
If a small increase in component performance produces a
considerable increase in system performance, 1t would seem
- reasonable to conclude that the component is seriously de-
grading system performance and creating a bottleneck.

As the increment in component performance used for
comparison purposes becomes arbitrarily small, the extent
to which a particular component is creating a bottleneck
will become proportional to the rate of change of system
performance with respect to the performance of that com-
ponent. In the case of central server networks where
individual servers correspond to system components, pro-
cessing rates (i.e., uo.ul....,uL) correspond to component
performance, and system performance is measured in terms of
processing capacity (i.e., Aouopo), it follows that the
extent to which the 339 server 1s creating a bottleneck is
proportional to g%JAouopo' Note that Ao is being regarded
as a function of U eUgsUpeeeeolyp, PosPysPos - 9P, and N
as indicated in equations 5-3 and S=4.

£_ = 2
auiAouopo 2- 4 up, for all 1,3efo0,1,2,...,L}

then the corresponding central server network has no bottle-

£ o

necks and is in some sense balanced. If on the other hand

one of the Aouopo 1s considerably larger than all the

3
OuJ

others, then the corresponding server 1s creating a serious

114

bottleneck and a small increase in its processing speed can
be expected to produce a significant increase in the system's
processing capacity. This should not be construed to mean
that bottlenecks are always undesirable. In fact, it 1is
sometimes advantageous to design bottlenecks into a system.
The section of Chapter 6 dealing with optimal peripheral
processor utilization (p. 152 ff.) 1llustrates precisely such

a gituation.

1S

COMPUTATIONAL FOR%ULAS

Baslic Iterative Formula

If XJ is defined as pjuo/uj then equation 5-3 can be

written more simply as

L
J = n -
G(N) E JLk (XJ) J 5-12

L

;é;hjéN

Equation 5-12 has an appealing mathematical symmetry and is
also well suited for certain types of symbolic manipulation
such as symbolic differentiation. However the computational

aspects of equation 5-12 are most unattractive, especially

.]
in light of the observation that there are %‘:—i}%—' states
0
of the form (n_,n.,...,n;) for which E n, £ N, Thus the
o'1 L =1 3

calculation of G(N) for the comparatively modest case in
which L = 7 and N = 17 requires the summation of 346,104
terms, each of which is the product of seven factors which
are themselves powers of the basic units (i.e., the XJ's).
While such computations are well within the capability
of modern digital computers, the large number of floating
point additions 18 a cause for at least some concern. There
is also the danger of floating point overflow since powers

of X, as high as (XJ)17 must be calculated.

J

#This fact is demonstrated by Feller (32, p. 38).

116

Fortunately there exists an extremely efficient com-
putational algorithm for evaluating G(N). For the case in
which L =7 and N = 17 this algorithm reduces the re-
gqired computation to 119 additions and 119 multiplications.
Furthermore, the values of G(1),G(2),...,G(16) are generated
as intermediate results so that 1t 1s possible to proceed
directly to the calculation of the marginal distribution of
customers at each server once G(17) i1s obtalned. That 1is,
once G(1),G(2),...,G(17) are obtailned, equation 5-7 can be
used to obtailn Aé.Ai.....Aé7. The values of the A%

J=1,2,...,L can then be obtalned using the Generalized

for

Conservation Law (i1.e., equation 5-8). It 1s also possible
to calculate expected queue lengths at this point, elther
directly from the G(k)'s using equation 5-10 or indirectly
from the A?'s using equation 5-9, line 3.

Before discussing the computational algorithm for G(N)
it 1s necessary to define one auxiliary functlion. Assume
X

that XXL are specified and define

12

£ n
g(n,2) = E TT (x" 5-13
3=1

Equation 5-13 18 defined for 1£/&L and n20. Note that G(n)
as defined in equation 5-12 is equal to g(n,L) for any value

of n. Note also that g(0,f) = 1 for 1£/<L.

117

Next note that if n=21 and £=22, then

g(n,t) = foE + x)
Z}fq J ZW a

> n.n & n,=0 ~>_—n‘-n&n=‘-1
J=1 J £ J=1 J .
Now
£-1
; ﬁ’ (x5 = § ‘Jﬂ; (X7
= 1 =
anén & n,=0 tnjfzn
J=1 J=1
= g(nog-l)
Also
£ n
T (XJ)) =

=1

J=Zlnj.‘=n & ny21

Xy Z ‘Jli‘ (x "
>

n &n-1
=1 9

= x[g(n-]-o[)

Thus g(n,) g(n,/=-1) + Xﬁ g(n=1,72) 5-14

The boundary condition corresponding to £2=1 \is

L K
g(n,1) = S (X,) 5-15

118

Equation 5-14 together with boundary condition 5-15
completely defines the computational algorithm for G(N).

This algorithm is represented schematically in Table 5-1.

xl X2 X3 e s @ X£ o o 8)(L
1 2 3 £ L
0 1 i 1 s 1 . 1
1 1+X1
2
2 1+x1+x1
g(n-lol)
. lx/é
n gin,=-1) —> g(n,2)
N K
N > (X,) g(N,L)
=0 1

Table 5-1

Algorithm Operation

Table 5-1 illustrates that each interior value of g(n,/) is
obtained by adding together the value immediately to the
left of g(n,?) (i.e., g(n,?-1)) and the value immediately
above g(n,7) multiplied by the corresponding column variable
(1.e., %[g(n-l,[)). Observe that the leftmost column will
be properly initialized if it is assumed that there is a
column of 1's immediately to the left of that column at the

start of the algorithm.

119

Note that the ultimate objective of the algorithm is to
determine the value in the lower right-hand corner of the
table since this corresponds to g(N,L) = G(N). However the
entire rightmost column is of interest since g(n,L) = G(n)
for n=1,2,...,8. Thus the values of G(n) for n=1,2,...,N=1
are natural by-products of the computation of G(N).

Table 5~1 1s slightly misleading since it creates the
impression that it is necessary to store the entire N by L
matrix of values of g(n,Z) in order to obtain the values of
interest in the rightmost column. In fact it is never
necessary to store more than N values at any given time.

To see this, suppose that the iteration begins with the
cell in the upper left-hand corner of the table and then
proceeds by moving down one column at a time. At any given
instant the only values required to complete a column are
those values which are below the most recently computed
value and one column to the left plus of course the most
recently computed value itself. In addition, all the values
above the most recently computed value must be retained
since they will be required in the computations for the next
column. This state of affalrs is represented schematically
in Table 5-2.

As 1l1lustrated in Table 5-2, the basic lterative step
in the algorithm involves replacing C(n) by C(n)+X£C(n-1)
and then either incrementing n by one if ndN or resetting

n to one and moving to the next column if n=N. Note that

120

when the algorithm terminates the final values of C(1),C(2),

a6 2 B GIR J
rightmost column of Table 5-1

vo ngBANGE))

X; Xy Xg s X,

1 2 3 B aie Vi
0 1 1 1 S e 1
1 c(1)
2 C(2)
3 C(3)
n-1 C(n-1) «—
n Clakx [____] e
n+1 C(n+1)
N C(N)

Table 5=2

will correspond precisely to the values in the

(L.e., to g(1,L), &(2,L),

s

last value obtained

next value to be obtained
C(n) will be set equal to
C(n) + X,C(n-1)

Storage Allocation

121

To implement the algorithm it is necessary to first set
C(n) equal to 1 for n=0,1,...,L so that the leftmost column
will be properly initialized during the first iteration.
Then the basic iterative step must be carried out for each
cell in the table. The complete algorithm for computing the
rightmost column of Table 5-1 can thus be expressed in

FORTRAN-11ke notation as follows:

DO 1 n=0,N

1 C(n)=1

DO 2 £=1,L
DO 2 n=1,N

2 C(n)=C(n) + XE*C(n-l)

Note that each evaluation of C(n) requires one addition
and one multiplication. Since C(n) is evaluated a total of
N-L times during the course of the algorithm, N-LL additions
and NI multiplications are required for the determination
o GLL) .62 vee oe G (M) &

The preceding example 1llustrates that the algorithm
defined by equation 5-14 is not only efficient from a
computational standpoint, but also from the standpoint of
storage requirements for both data and procedure. The
next section discusses the way in which this algorithm and

its variants can be applied to the wide class of queueing

122

networks considered in Appendix B.

Extensions

Two extenslions to the basic iterative formula will be
considered in this section. The first extension, which is
relatively minor, will cover the case of closed queueing
networks with simple exponential servers. These networks
are discussed in the first section of Appendix B. The second
extension will cover the networks discussed in the second
section of Appendix B: namely, closed queueing networks with
queue dependent exponential servers.

The steady state distribution of customers in a closed
queueing network with simple exponential servers is presented
in equations B-8 and B-9. These equations are of the same
form as equations 5-2 and 5-3 except that yo/uo = 1 in the
case of 5-2 and 5-3. Setting XJ equal to yJ/uJ. equation
B-8 becomes

L
1 n
P(n_snys...onp) = TNy JLL (XJ) 3 5-16

and equation B-9 becomes

3 (5 ™ 5-17
sy = > T (xp™ -
=0 3

123

Equation 5-17 can be evaluated in an efficient manner

with the aid of a minor change in the definition of g(n,?).

2
Let g(n,?) = E ;H;(xj)n; 5-18

£
E::hj=n
J=0

Next note that the argument leading from 5-13 to 5-14
is still valid and that

g(n,?)

g(n,f-1) + X,-g(n-1,4) T
for 1«n&N and 1¢/ <1,

The boundary condition corresponding to /=0 1is

g(n,0) = (x)°

. 5.20

Thus the only differences between the computation of
G(N) in 5-17 and the computation of G(N) in 5-12 are the
boundary condition and the presence of XO. The boundary
condition can clearly be accounted for by initializing C(n)
to 0 instead of 1 for n=1,2,...,N. C{(0) must still be in-
itialized to 1. The computational algorithm for obtaining
the values which correspond to the rightmost column of
Table 5-1 for the case where G(N) is defined by equation
5=-17 can thus be expressed in FORTRAN-like notation as

follows:

124

c(0)=1.0
DO 1 n=1,N
1 C(n)=0

DO 2 /=0,L
DO 2 n=1,N
2 C(n)=C(n) + XQ*C(n-l)

The computation of marginal distributions 1s also quite
similar to the previous case. Note that a natural analog to
the Generalized Conservation Law (i.e., equation 5-8) can be

derived since

Ag = E P(no.nl.....nL) 5-21

T
S n.=N & n 2k
i=0 1 J

E 1 L n
= a(ﬂ 2 (Xi) i by 5-16

125

Thus Al; - (xj)k%%‘-g—‘j‘l 5-22

Equation 5-22 is valid for j=0 as well as for j}=1,2,...,L.
Thus, once G(1),G(2),...,G(N) are calculated, the marginal
distribution of customers at each server may be readily

obtained.

The extension to the case of queue dependent exponential
servers is slightly more complex. If XJ is8 once again set
equal to yJ/uJ.then equations B-15 and B-16 which define the

steady state distribution become
L n
(X,)7)
1 II
P(no,nl.....nL) = ETET 0 KE%;;T 5=23

and

[323 |
G(N) = E 4o K—%;—T 5-24
L
E nJ-N

3=0

where AJ is defined in equation B-11.

In this case g(n.f) will be redefined as

J
g(n, /) 2 J-O 5-25

Z =0
3=0

126

It is assumed in equation 5-25 that 0£/<L and n20. Note
that it 1s agailn true that g(0,/) = 1 since AJ(O) = 1 by
equation B-11.

Next note that if 1&/<L

3 £ (X)nJ-
g{n,f) = > > J-OW
e %é%hj=n & ng=k

n & F
S 2 S0

= Ag k J=0 A n)
n,=n-k & n =0

| =0 *

k
(Xp)
= E ——z—)- (n-k,2-1) 5-26
k=0 .

It also immediately follows from 5-25 that the boundary
condition corresponding to £=0 1is
(x,)" ,
g(n,0) =] 5-27

(o]

127

The computational formula for g(n,/) given in equation

5-26 1s represented schematically in Table 5-3.

Xl X2 X3 oieie Xg oo X.L
i 2 3 i wvs £ i L
(xp)" i
0 1 1 1 DR 1x Al(n)) i
i g(1,/-1) x Ay(n-1)
(x[)n-Z
2 g(2,/-1) x A[(h-ZT 4
2
(Xp) 3
n=2 g(n-Z,p-l) xAl(zj
i
(Xy) -
n-1 g(n-l,[—l)" Al(l)
0
(X5)
n g(n,f-1)x A?(O) Tl g(n,f)
N
Table 5-=3

Algorithm Operation for Queue Dependent Servers

128

The storage allocation pollcy depicted in Table 5-2 is
clearly not adequate in this case since 1t is necessary to
save the entire £_1§£ column until the last entry in the ZED
column has been calculated. If the entrles in the ZED o BEI =SS
current) column are represented by C(n,LC) for n=1,2,...,N
and the entries in the Z-1§E (1.e., previous) column are

represented by C(n,LP) for n=1,2,...,N , then the basic

iterative step of the algorithm involves setting C(n,LC)
n

equal to C(n-k,LP)*(X[)k]///AE(k) .
k=0

When expressing thls algorithm as a FORTRAN-like program
i1t is convenlent to assume that C 1s a doubly subscripted

variable with dimension N+1 by 2. The algorithm is then:

c(0,1)=1 :
. Initlallze
DO 1 n=1,N . first
. column
1 C(n,1)=0 :
C
LP=1 . Initiallize
R . LP and LC
C
Do 3 ¢=0,L
DO 2 n=1,N
G, 10 Ym0 . Ferform
. basic
DO 2 k=0,n . lterative
2 C(n,LC)=C(n,LC) + C(n~k,LE)*(Xp**k)/Ag(k) : S*eP
LF=3-LF . Interchange
3 Lo=1-LC . LP and LC

129

Note that each time a column is completed LC and LP are
interchanged so that the most recently computed column
becomes the previous column for the next iteration and the
other column becomes the storage area into which the results
of the next iteration will be placed. When the algorithm
terminates the values of C(n,LP) will correspond to the
values of g(n,L) for n=1,2,...,N.

The marginal distribution of customers at each server
is also more complicated in this case. To demonstrate how

this distribution can be computed, first define

k :é
EJ = P(no.nl.'.'.nL) 5-28
o
n,=N & n_ =k
i=0 * 3
Note that Eg = A? - A§+1 where A? is defined in

equation 5-21. Thus far the strategy has been to obtain the
values of Aﬁ first and thus, by implication, the values of
E; , but in this case it is easier to obtain the values of

E, directly.

e Ren ¥

At this point it is necessary to introduce one additional

auxiliary function. Let

L n
(X,)7)
h(n.[) = Z IJO W— §=29
L

%;%hj=n & qp=0

130

Note that equatlon 5-29 bears a marked resemblance to equa-

tion 5-25; in fact, it is easy to see that h(n,L) = g(n,L-1)
fior n=0,30, av o N

Returning to the calculation of E? , note that

L (X)nl
EX = EE 1L [T =2
3 5 G(N) 1=0 AIani

_2- n,=N & n =k
1=0 ! J

g 5" |L| i, 9™
© GINY A (k) :Z 1=0 A (ny)

==
n.=N-k & n =0
i=o ! J

k
- iy Mg =

Thus, assuming the values of h(n,)) have all been calculated,

the values of E? can be easlly obtained using equation 5-30.

It has already been pointed out that the values of h(n,L) are

automatically calculated by the algorithm for G(N) so that

h(n,L) = C(n,LC) for n=0,1,...,N at the completion of this

algorithm. To obtain values of h(n,f) for {#L 1t is neces-

sary to permute the sequence of XJ's so that the last

(1.e., LEQ) X, 1s equal to X;. The algorithm for G(N) must
3 ¢

then be applied to this permuted sequence. It 1s of course

131

possible to stop at the L-1§£ column in this case since the
LEh column contains no new information.

It should be noted that it 1s possible to adopt a hybrid
approach at times when some of the servers in the network
are of the simple type (i.e., some of the AJ(k) are identi-
cally equal to one). In these cases the values of A? for
the simple servers can be computed directly from equation
5-22 with no need to resort to equation 5-30. Also, if the
servers are permuted so that the first S+1 are all simple,
then the first S+1 columns of Table 5-3 can be computed
using the algorithm of Table 5-1. The remaining L-S columns
must then be computed using the more complex algorithm of
Table 5-3. The hybrid algorithm appears on the following
page. This algorithm should have wide applicability since

many networks of interest contain at least a few simple

exponential servers.

132

C{0,1)=1
bo 1 n=1,N

1 €¢n,1)=0

Do 2 ¢=0,8

DO 2 n=1,N

2 C(n,1)=C(n,1) + Xp*C(n-1,1)

Li=1

LC=2

DO 4 f=5+1,L
DO 3 n=1,N
C(n,LC)=0

DO 3 k=0,n

3 C{n,LC)=C{n,LC) + C(n-k,LP)*(Xe**k)/Af(

LP=3-LP
4 LC=3-LC

Hybrid Algorilthm

for the computation of g(N,L)

133

Initialize
first
column

Evaluate first
S+1 columns
using algorithm
for simple expo-
nential servers

Initialize
LY and LC

FPerform
basic
iterative
step

k)

Interchange
LP and LC

CHAFTLR 6: AFFLICATIONS

INTRODUCTION

The analysis presented in Chapter 5 dealt primarily
wlth the mathematical aspects of central server networks.
That is, the steady state distribution and its associated
properties were all derived without explicit mention of the
fact that central server networks are of interest as models
of multiprogramming systems. Since central server networks
were treated as mathematical objects rather than mathematical
models, Chapter 5 may be regarded as an excursion into the
realm of pure mathematics.

In this chapter central server networks will once again
be regarded as mathematical models and will be used to examine
a number of problems related to the operation of actual
multiprogramming systems. Three specific problems related
to buffer size determination, peripheral processor utiliza-
tion and page traffic balancing will be considered.

In each case the emphasis will be on gaining insight
into the nature of the underlying stochastic process. While
such insight has always been regarded as the primary ob jective
of the central server model, it should be noted that the
model can also be used to examine the behavior of actual
multiprogramming systems simply by assigning empirically de-

termined values to the model parameters and then correlating

134

predicted behavior with observed behavior. This alternative
use of the central server model represents a distinct depar-
ture from the underlying theoretical orientation of this

thesis and thus will not be pursued further at this time.

BUFFER SIZE DETERMINATION

Problem Definition

In order to optimize buffer size for I/0 devices in a
multiprogramming environment it is necessary to balance a
number of interrelated factors. For example, as buffer size
increases the amount of main memory space available for pro-
gram storage decreases, and this in turn reduces the degree
of multiprogramming and tends to degrade system performance.
On the other hand, as buffer size decreases the number of
I/0 transfer requests per program increases. Assuming that
each transfer involves a certain amount of overhead which is
independent of buffer size, the total amount of overhead per
program will thus increase as buffer size decreases, and this
will also tend to degrade system performance. Hence it is
important that buffers be neither too large nor too small.

Changes in buffer size bring about other effects as
well. For example, decreasing the buffer size associated
with a particular peripheral processor decreases the expected
processing time per request for that processor, increases

the total expected number of PPU and CPU processing requests

135

per program, decreases the expected time required to complete
a CPU processing request (since PPU requests become more fre-
quent), and alters the probabilities governing the selection

of peripheral processors. The remainder of this section will
be devoted to analyzing this set of interrelated factors with

the ald of the central server model of multiprogramming.

Helation Between Buffer Size and Network Parameters

Suppose that it 1s desired to optimize buffer size for
the 1§£ PPU in a central server network. Assume that the
corresponding system contains M units of main memory which
may be used for elther program or buffer storage, and suppose
that average program size excluding buffer space for the 1§£
PPU 1s equal to one memory unit.

Next suppose that the amount of time required to perform
an I/0 transfer on the 1§£ PPU 1s a random variable made up
of two components: the first component represents overhead
and has an expected value of v regardless of buffer length,
while the second component represents actual transfer time
and has an expected value of sfb where Sq 1s a constant and
b 1s the length of the buffer measured in memory units.

Since all processors in a central server network are assumed
to have exponentially distributed service times, it will
further be assumed that the amount of time necessary to carry

out an I/0 transfer on the 1§£ PPU, gliven that buffer size

136

for the 1EE PPU is equal to b, is an exponentially distributed

random variable with mean v + sfb =
Four addltional factors are required to complete the
specification of the network. These are defined as follows:
r, = total expected amount of data transferred to the 1§E
FPU per program (measured in memory units of data)
rJ = total expected number of processing requests directed
to the ¥ PPU per program (j=2,3,...,L)
s, = expected amount of processling time for a request

directed to the j¥& PPU (3=2,3,..,L)

C = total expected amount of CPU processing tlime per program

The next step 1s to determine the parameters of the

assoclated central server network under the assumptlon that

buffer slze for the 1§£ PPU 1s equal to b. Note first that

uy = 1/sJ (3=2,3,...,L) regardless of the value of b, and

that u, = 1/(v+slb) by the definitions of v and s

X "
Determination of the branching probabilities is slightly

more complicated. Since buffer size 1s equal to b, the
total expected number of transfer requests per program
directed to the 1L PPU 1s rl/b . Thus the total expected

number of PPU processing requests per program 1is rl/b +
L
5 ry - Applying equation 4- 4,
j=2
L
1/p0 -1 = I‘l/b o J§=2 I‘J

L
1/(ang /B> v
=2 J

Thus P,

137

By the results collected in Table 4-2,

pJ/pO = rj FOF J=2., 3y oyl

L
Thus Py = P, = rJ/(1+r1/b+%E; rj)

Also, p,/p, = r;/b

L
Thus p, = (r;/b)p, = (rl/b)/(1+r1/b+§§; ry)

All the branching probabilities have now been expressed as
functions of b.

To determine u, note thatL 1/(uopo) = C by Table 4-2 .
Thus u_ = 1/(p,C) = (1+r1/b+:g; rj)/C . The only network
parameter still to be determig;d is N, the degree of multi-
programming. Since each program requires b memory units
for a buffer for the 1§£ PPU and one memory unit for other

purposes (including program storage), it immediately follows
that N = M/(1+b)

Non~-Integral Values of N

This last equation introduces certain difficulties
because N is no longer necessarily integral as required by
the original central server model. Fortunately, there is a
rather simple way to remedy this situation. Note first that
one way of interpreting the statement that N = 6.5 1is to
assume that there are 6 programs in the system for half the

time and 7 programs in the system the remainder of the time.

¥38

In general, the statement that N = I + h where 1 is an
integer and 0O<h<l can be interpreted to mean that there
are I programs in the system part of the time and I+1 pro-
grams in the system the rest of the time, where the fraction
of the time that there are I programs in the system is equal
to 1-h and the fraction of the time that there are I+l pro-
grams in the system is equal to h.

Continuing with this line of reasoning, if PN(no’nl""’
nL) i1s the steady state probability that there are nj pro-
grams at the jgﬁ server in a central server network, given
that there are N programs in the entire system, then
PN(no’nl""’nL) will be defined as (1-h}PI(no,n1,...,nL) +

h-P ,nL). That is, if N 1s not integral then

TR TR
the steady state probabilities associated with N will be
defined by simple linear interpolation using the two integral
values closest to N. There are obviously other ways of de-
fining PN(no,nl,...,nL) for non-integral values of N, but
these will not be explored at this time since the linear
interpolation method is satisfactory for the problem at hand.
Chapter 7 contains a discussion of some of the alternative

methods of dealing with the problem of non-integral values

of N.

Optimization mguations

Now that all the network parameters have been represented

as functions of b, it is possible to consider the problem of

139

optimizing system performance with respect to b. Since sys-
tem performance is measured in terms of processing capacity,

the problem is thus to optimize

2> n . £N-1
1
KPPy = L Y5Ps
E TT (pjug/m™y
J=1
L
EE:hjéN
J=1
with respect to b
L
where p_ = 1/(1+r./b+>_r,)
o} 1 =2 J
L
p, = (rl/b)/(1+r1/b+‘j=Z2 ry)
L
Dy = 8 S % /b+z£: i} PO 88, Fsns opls
J 3| & =2 g
L
u, = (1+r1/b+%;; rj)/C
u, = 1/(v+slb)
uj = l/s'j Fol J=2. 5 ves pki
and N = M/(1+b) where non-integral values of N are

evaluated by linear interpolation

Even though all the network parameters - except the u

J

for J}=2,3,...,L - depend on b, many of these dependencies

140

cancel each other out in the expression for Aouopo. For
example, 1if XJ is defined as pjuo/uj, e T8 J=2, 35 wimsl

pjuo/uJ

L I
r./(1+r./b+>_r,) (1+r /b+§ r)/C
il 1 =2 J 1 =2 7|

&8
J

1/sJ

]

rjsj/C

Thus Xj is independent of b for j=2,3,...,L.

L 5
Also u_p_ =[(1+r1/b+€§; rJ)/C] [1/(1+r1/b+§£;:rj)]

= 1/C
Since uopo is independent of b, this factor can be omitted
from the original optimization problem so that the problem
becomes one of optimizing Ao - rather than Aouopo - with
respect to b.
Finally, note that

Xy = pyuy/uy

L L
(r,/b)/(14r. /b+> _r.) (14r,/b+2_ r,)/C
! - e By

1/(v+s,b)
!
i T L
B rlv N rlsl
- b C

141

Thus the problem is to optimize

s P8) r,v
- LW 1
where xl = = + BC
r.s
XJ = —%Ti fior J=25% Bais s g b

and N = M/(1+Db) where non-integral values of N are
evaluated by linear interpolation

Analysis

At this point it is useful to consider the consequences
of setting v, the expected overhead per transfer, equal to
zero. In this case the only factor which remains dependent
upon b is the degree of multiprogramming since N = M/(1+b).
This is true even though the expected number of processing
requests per program for the 18t ppy & T rl/b) and the
expected time to complete a processing request on the 1§£
FPU (i.e., s,b) still depend on b. The point is that

these effects cancel each other out entirely in the zero

overhead case. Hence it is desirable to select a value of

142

b which is as small as possible since this will maximize N
and thereby optimlze system performance.

The introduction of non-zero overhead significantly
alters this state of affairs. When v is greater than zero
a decrease in b will not only increase the expected number
of processing requests per program directed to the 1EE PPU
(1.e., rl/b) but also will increase the total expected
overhead per program (i.e., v-rl/b). This increase in total
overhead will tend to degrade system performance, thus
counteracting the improvement in system performance which
results from the increase in N.

Note that decreases in b produce two important effects:
total overhead increases which tends to degrade performance,
and N increases which tends to improve performance. Since
the degradation assoclated with the first effect decreases
as v decreases, 1t is possible to decrease b further when v
1s small before reaching the point at which the loss associ-
ated with the first effect outweighs the gain assoclated
with the second effect. In other words, as v decreases the
optimal buffer size also decreases.

The preceding analysis also has implications for the
case in which v is held constant and the size of main memory
(1.e., M) is varied. Under these circumstances the improve=-
ment associated with the second effect will be less pro-
nounced for larger values of M since it is less important

to increase N when N is already large. That is, the gain

143

in performance in going from N=6 to N=8 is less significant
than the gain in performance in going from N=2 to N=4. Hence
it 1s possible to decrease b further when M 1s small before
reaching the point at which the gain associated with the
second factor ceases to outweigh the loss associated with

the first factor. This implies that optimal buffer size de-
creases as total memory size decreases.

Table 6-1 1llustrates these general remarks with specific
numerical examples. Each row of the table is associated with
a particular value of s, so that, within each row, the trans-
fer rate of the l-S-E PPU is held constant while the expected
overhead per transfer (i.e., v) and the size of main memory
(1.e., M) are varied. Note that within each memory group
the optimal buffer size decreases as overhead decreases. It
it also possible to observe that optimal buffer size decreases
as maln memory size decreases simply by comparing columns
which have the same assocliated value of v.

None of the results presented thus far could be described
as particularly surprising. However, Table 6-1 illustrates
one effect which may indeed merit such a classification. To
observe this effect it 1s necessary to scan down the columns
of the table rather than scanning across the rows. Note that
the only factor that varies within a column 1s the transfer
rate of the 1§£ PPU. That is, the further down in a column
an entry appears, the lower the associated transfer rate. A

scan down any of the columns thus reveals that optimal buffer

144

M 4 10 20

v 25 . 50 WA : 25 .50 .75 2D . 50 75
r
el 33 B9 B5] .37 .62 -84 .38 T =92
} 2 .33 .50 .65{ .40 .66 .85 .42 .71 1.00
.3 .33 .50 .66f{ .43 .67 .88| .44 .78 1.03
Lol - 73 «51 .66 43 O o2 P 49 ibe | Ll
% % .33 .51 .67; .44 .69 .96] .54 .89 1.21
1 46 o)) .52 67 L7 w3 L0 «59 .97 1.22

A . 34 .58 .68 . 50 .76 1.00 <66 LoD | 1.3

+8 <34 53 .68 w53 .79 1,00 .70 1.08 1.41

e .34 .53 .69 «55 +82 100 78 1.18 1.%0
1.0 .35 .53 .69 .58 .85 1.00f .82 1.22 1,50
Lal + 35 . 54 .70 60 89 1.03 .89 1.26 1.56
1.2 " 55 . 54 o 7.0 65 .92 1.06 .99 1.36 1.66
1.3 eI .54 o 7l Bl .96 1.08f 1.00 1.48 1.78
1.4 .36 85 70 07 L4000 .01 9.07 $.50| 1.86
1.5 « 36 «55 o 71 67 1.00 1.15{ 1.19 1.50| 1.86

51

Table 6-1
Optimal Buffer Size
M = Maln memory size
= Expected overhead per transfer

84 = Expected time to transfer a buffer of unit size
L = 4
C = 1000
rj -~ 1000 for j=1,2,3,4 Additional problem parameters
sJ = 1 for j=2,3,4

145

size increases as the transfer rate decreases. In other
words, slower devices should have larger buffers than faster
devices.

There are no doubt factors beyond the scope of the model
which tend to counteract this effect. However, it 1s still
lmportant to understand the factors within the model which
work to bring this effect about. Recall that the two most
significant consequences of changes in buffer size are the
change in the degree of multiprogramming and the change in
the expected amount of overhead per program associated with
the 1-51-12 PPU. Next note that as the transfer rate of the 1§E
PPU decreases, the extent to which that PPU is creating a
system bottleneck and degrading overall performance increases.
This is true regardless of the expected overhead per transfer.

This bottleneck effect is then compounded by decreasing
b since decreases in b increase the overhead associated with
the 15X ppy. 1Ir the 12% PPU is already creating a serious
bottleneck because of its low transfer rate, the additional
overhead associated with small buffer size will be quite
harmful, and hence it will be preferable to select a larger
buffer size even though this reduces the degree of multipro-
gramming to a significant extent.

On the other hand, if the 15% PFU has a high transfer
rate and is not acting as a system bottleneck, buffers can
be made quite small before the combination of overhead plus

transfer rate creates a serious bottleneck. The optimal

146

buffer size will thus be smaller in this case since the im-
provement in performance due to increasing the degree of
multiprogramming will not be outweighed by the bottleneck
effect until b reaches a smaller value. Hence, within the
context of the model, slower devices should be allocated
larger buffers than faster devices.

Table 6-2 amplifies these remarks still further. The
table corresponds to the row in Table 6-1 for which the time
to transfer a buffer of unit size (i.e., Sl) is equal to .5
The entries in Table 6-2 i1llustrate the way in which system
performance varies as a function of buffer size for each
combination of overhead and memory size in the corresponding
row in Table 6-1. The same values appear in both Part A and
Part B of Table 6-2, but the columns are grouped together
differently in each part. The values in Table 6-2 are also
presented graphically in Figure 6-1.

In Part A of Table 6-2 the values are grouped together
according to overhead. The upper rows 1llustrate that, when
buffer size 1s small, the chief factor affecting performance
is the bottleneck effect created by the excessive overhead
load on the 1§£ PPU. Thus, performance is approximately the
same within each overhead group even though main memory size
varies greatly. In other words, the degree of multiprogram-
ming has 1little effect on system performance because of the
bottleneck created by the 1§£ FFU. Note that the degradation

due to the bottleneck increases as the expected overhead per

147

v = .25 .50 .75 E
M= 4 10 20 b4 10 20 L 10 20%
il W29 JFF 55 A8 S8 JiBd 2 13 13
o2 .38 .53 .s7f .28 .33 .331 .22 .24 (24
.3 L0 0 L60 .71l 033 W45 46) .28 .33 .33
iy 40 .62 .76 .35 + 51 .57 .31 A1 42
.5 Lo L6277 .36 .55 64 .32 .46 .50
.6 39 .62 771 .36 .56 681 .33 49 .56
.7 38 Wbl a76F 35 W57 J7L] «53 W50 .61
.8 37 60 L7 35 W57 7Ly o092 52 <6l
.9 .36 .59 .751 .34 .56 .72) .32 .53 .66
1.0 .35 .58 .74} .33 .56 .71} .32 .53 .67
| 3 .57 .731 .32 .55 .71f .31 .52 .67
1.2 .33 .56 .73} .31 .54 .71} .30 .52 .68
1:3 32 .55 7Bl Bl W53 70 28 «B1 ¢ 467
1.4 .31 .54 .71l .30 .52 .69] .29 .51 .67
1.5 30 453 J71f .29 .52 .691 .28 .50 .67
J

b

Table 6-2 Part A

System Performance as a Function of Buffer Slze

Main memory size

Expected overhead per transfer

Buffer slze

148

<

i

Table 6-2 Part B

System Performance as a Function of Buffer Size

Main memory size

Expected overhead per transfer

Buffer size

149

M o= b 10 20
v = .25 .50 .75] .25 .50 .?5{ .25 .50 .75
.1 g 29 A8 12| 33 8 W3t 33 .18 .15
{ .2 § .38 .28 .22| .53 .33 281 .57 .33 24
P .3 { Js0 0 .33 .28 .60 .45 .33) .71 46 .33
e ; Lo .35 .31 .62 .51 41| .76 .57 .42
5 | W40 .36 .32 .62 .55 M6 77 W64 .50
£ 1 <38 36 3B 62 358 N9l 77 68 .56
o7 g .38 .35 .33{ .61 .57 .51} .76 .71 .61
8 F <37 55 %y B0 AR S2Y W98 Sl a8k
.9 % 38 LW L38% B9 9B sust s Gm2l .66
1.0 z .35 .33 .32 .58 .56 .53] .7% .71 .67
ol | 23 3B W 5 55 SR ST L 8
f.2 & 38 <3 Wi 56 .98 SEY .73 S 68
1.3 32 L3 L29% 55 .83 WBiL g2 7t 67
1.4 .31 .30 .29{ .54 .52 .51} .71 .70 .67
1.5 .30 .29 .28} .53 .52 .50| .70 .69 .67
b

transfer increases.

Conversely, the lower rows of Table 6-2 Part B illustrate
that the expected overhead per transfer has no appreciable
effect on system performance when buffer size is large. In
this case the most important factor limiting performance is
the degree of multiprogramming, and this in turn is dependent
only upon the size of main memory (i.e., M).

The curves plotted in Figure 6-1 all i1llustrate the
fact that the degradation due to excessively small buffers
1s considerably more severe than the degradation due to ex-
cessively large buffers. This 1s becguse the expected total
overhead per program increases quite rapidly as buffer size
decreases and, in fact, goes to infinity as buffer size
approaches zero. Thus it 1s generally better to err on the
side of larger than optimal buffers in cases where some un-
certainty exists.

As stated earlier, there may be other factors not re-
presented in the central server model which tend to make
large buffers more desirable for fast devices. For example,
in real-time systems it 1s important to insure against buffer
overflow even though this may result in large buffers and a
sub-optimal degree of multiprogramming. The point of this
analysis is not to discount the importance of these other
factors, but merely to introduce one additional and perhaps

unexpected factor into the decislon making process.

150

A
o
I

.7 1

'31'

= Relative performance

sl il ' & -

+ ' 2 -

.2 b 6 .8 1.0 1.2 1.4
b = Buffer size

Figure 6-1

Effect of Buffer Size Variation on Relatlive Performance

151

FERIFHERAL PROCESSOR UTILIZATION

Problem Definition

Conslder a system which contains a set of functionally
equlivalent peripheral processors such as a disk, a drum and
a data cell, and assume that 1t 1s possible to vary the
relative number of I/0 transfer requests which are directed
to each of these processors. Such varlation might be brought
about by altering monitor tables which control the movement
of overlay segments and temporary flles, or by adjusting
pricing policles so that it 1s more economlical to use one
devlice rather than another. In any event 1t will be assumed
that the total number of I/0 transfer requests directed to
this set of functlonally equlvalent processors 1ls constant,
but that the relative number directed to each individual
processor is a specifliable parameter. The optimal selection
of these parameters 1s thus one of the many problems of

operating system deslgn.

Optimization Equations

One method of approaching thls problem is to assume
that the system in gquestion is represented by a central
server network. Let S be the set which contains the sub-
scripts of the functlonally equivalent processors, and let
T be the total expected number of I/0 transfer requests per

program directed to this set of processors. Since the

152

expected number of processing requests directed to the 1-1--’--P-1

PFU in a central server network is pi/po » the values of p,
for 1 €S must be chosen so that > _ p,/p, = T. The other
parameters characterizing the net;ZER such as the speed of
processors, the degree of multiprogramming and the branch-
ing probabilities for the other processors in the network
(1.e., the Py for 1&£S) are all constants. Assuming system
performance is measured by processine capacity, the problem
then i1s to maximize

L
L; N (pjuo/uj)nj

=1
1

AU P = > . ¥ 6-1
n

> h
J=1

with respect to {p,|1&S8},
subject to the constraints that E py, = poT and Py 2 0,

1eS

Discussion of Results

Problems of this type fall within the realm of the
calculus of variations and are generally treated using the
method of Lagrange multipliers. Unfortunately this method
has not ylelded a closed form solution which expresses the
values of Py for 1€ S 1in terms of the other network para-

meters and T. However, a number of interesting relations

153

have been shown to hold at the point of optimal system per-
formance.

Before discussing these relations it is worthwhile to
examine the general problem on an intuitive basis. Note
first that if two processors in the functionally equivalent
group have the same speed (i.e., uy=u, o fs)e8)y 16 ds
reasonable to expect that Py should equal pJ at the point of
optimal system performance since directing a greater propor-
tilon of processing requests to one of these processors would
tend to overload it while underloading the other. This in-
tuitive judgment has been substantiated analytically.

On the other hand there is a seemingly obvious general-
ization of this line of reasoning which is not valid. Suppose
that processor i is t times faster than processor j (i.e.,

u,=tu, for i,je&sS with t »1). It might then seem optimal to

J
channel t times as many processing requests to processor i

as to processor j (i.e., to set p1=tpj)' This would have the
effect of equalizing pi/u1 and pJ/uJ, which would then imply

that A1 = A, by the Conservation Law and Q1 = QJ by equation

J
5-10., While these conditions may seem compatible with opti-
mal performance, it can be shown that system performance is
never optimized when p1=tpj; instead, it is preferable to
have Py >tpj. That is, faster processors should receive
more than their proportional share of processing requests.

It then follows that faster processors should be more highly

utilized and should have longer expected queues; it 1s also

154

true that performance is optimized when faster processors
are creating system bottlenecks in the sense of the previous
chapter.

Table 6-3 illustrates these remarks with specific
numerical examples. The table deals with a central server
network containing four peripheral processors, two of which
are assumed to be functionally equivalent. That is, L=4
and § = fj,h}. In addition T=2, p_=p,;=p,=.2, U =u,=1 and
uo=5. With these parameters held fixed, the speeds of the
functionally equivalent processors (i.e., u3 and uu) were

varled subject to the constraint that u +u4=2. For each

3
value of u3/uu the optimal values of p3 and p, were obtained
by a numerical search. FEach time an optimal point was
located, a record was made of the following three system
characteristics: p3/p4 3 Q3/Q4 and %EBAouopo/ gﬁﬁAouopo
This entire procedure was carried out for four different
values of N as indicated in the table.

The table illustrates that the optimal value of p3/pu
is always greater than the corresponding value of u3/u4 as
long as u3/uuj>1. However, this effect 1s more noticeable
for large values of u3/u4 and for small values of N. That
is, as the difference in the speeds of the functionally
equivalent processors increases or the degree of multipro-
gramming decreases, i1t becomes even more important to channel

a greater number of requests to the faster processor. The

ratio of expected queue lengths and the extent to which the

155

B L e

(o}
(o} QO =+ NN M X N NO O O~
O [qV] e e & & e e e e e
:So -t Lo IR B I B B B B
B]
=
l: O N F N DO MO
mfb (e8]
\ N et - N N N
(o}
o} O F O N o OO
(o) n e e @ @ & & & *
= L B = B B o N B oV R . W, SN & SN oV |
o] -t
<
(s8]
o2 O VN N = Do
[ge] = o Ul e e er hf
e~ - N N ¥ 0 I
oV}
&5 C M~ O O~ O 2
e & & & & & ¢ s
o~ o NN NN Y M
i C VNN OV NN H OV
e e & & & 2 & = 0
0;;} o H NN TN
~N
(32
¢4 ©O WV WV N0 XN
) e e e e e e e e o
N = N O N O F O
~ N
P O O O @ W O WV
-~ M X 2O
ot o
O M2 VN N 2 O~
AN & e & e @ @& o ‘s
— - = NN N N0 O
O W D~ O A)
(e8] e e e o &8 & e & _»
= = = AN M NN OO M
2 o~
~N
(28]
e} ™~ © © W\ O =¥ w O O
* & & & & o L |
~ N MWV o N O
et =t M O
O M M I~ =+ o O
e . e L T
- N I &~ 2> O ®©
a O
=
=2
= O VN o WVNWOo WNOo WNO
Ny e o e & e e e e
s("\ - NN MM N

156

Table 6€-=3

System Characteristics at Points of Optimal Performance

faster processor is creating a bottleneck are also seen to
be positively correlated with the difference in the speeds
of the two processors and negatively correlated with the
degree of multiprogramming.

These observations can be explained on an intultive
basls by noting that it 1s preferable to channel processing
requests to the faster PPU as long as the expected walting
time plus processing time for the faster PPU 1s less than
the expected walting time plus processing time for the slower
PPU. As the degree of multiprogramming decreases, the ex-
pected walting time for all processors in the system decreases,
and hence 1t becomes possible to channel more and more pro-
cessing requests to the faster PPU before the build up in
walting time overtakes the processing speed advantage. To
further 1llustrate this point, note that in the limiting
case where the degree of multiprogramming ls equal to one,
the faster PPU should recelve all the processling requests
Ssince there is never any queue walt. Thls analysis does
not take into account limits in storage capacity or other
factors which might make it necessary to channel at least
some requests to the slower PPU in this case.

Increasing the speed differential between the faster
PPU and the slower FPU reduces the expected walting and pro-
cessing time for the former while increasing the expected
walting and processing time for the latter. Thus, to main-

tain optimal performance in this case, 1t 1s necessary to

157

increase the expected queue length at the faster PPU by
channeling still more processing requests to it. Hence, on
Intuitive grounds it can be seen that the optimal proportion
of processing request channeled to the faster PPU increases
when either the degree of multiprogramming decreases or the

speed differential between the FFU's increases.

Mathematical Analysis

Two useful conditions will be shown to hold at the point

of optimal system performance. The first is that

i X
Dy E;; o) {Pyus/uy)
= = N for all 1,j€S. 6-2
J ¢, (¥
> e U4 VO
ker Ko
The coefficlents Cy in equation 6-2 are defined as follows:
o, = SEK)L _ GRSk for k=1,2,...,N=1
and ¢y = 1/G(N)

Equation 6-2 implies that pi/pJ = ui/uJ at the point of
optimal performance if and only 1if u, = uj. To see this,
note that pi/pJ = ui/u'j implies piuo/u1 = pJuo/uj , Which in
turn implies that the right hand side of equation 6-2 is
equal to one. Thus, 1if pi/pJ = ui/uj and Uy = Uy then
equation 6-2 will be satisfied and the system will be optl-
mized. Conversely, 1if pl/pJ = ui/uJ and the system 1s optl-
mized (i.e., equation 6-2 is satisfied), then the left hand

side of 6-2 must be equal to one. This then implies u, = Uy

158

The second condition of interest which holds at the

point of optimal performance is that

2]

A ou Aouopo

s i 85
By = 8 A u

J buj o) opo

In addition to simplifying the computations for the last set
of columns in Table 6-3, this equation also demonstrates

that bottlenecks must exist at the point of optimal perfor-
mance if u, # uy since Ai/Aj is equal to one if and only if
pi/pj = ui/uj by the Conservation Law, and thils equality will
exist at the point of optimal verformance if and only if

u, = u

i J
uy # uj there must be a bottleneck at the point of optimal

as demonstrated in the previous paragraph. Thus, if

performance.

Equations 6-2 and 6-3 can be formally derived from the
optimization conditions for equation 6-1 by the method of
Lagrange multipliers. Before applying this technique it is
useful to make a few elementary observations. First note
that F, cannot be a member of the set {pi\-iés3 since the
CPU is not being considered as one of the functionally
equivalent processors. Hence the factor u_pP, is invariant
with respect to fpi| 168} and may be disregarded during the
optimization procedure.

Next note that AO = G(N-1)/G(N) where G(N) is defined
in equation 5-3 . Thus the original problem is equivalent

to the problem of maximizing G(N-1)/G(N) with respect to

159

§p1|1683 subject to the constraints that > py =p, T and
i1eS
Py =2 0. Applying the method of Lagrange multipliers, this

1s then equivalent to maximizing

G(N-1)/G(N) + « | 2> p, -~ pOT] 6-1t
1eS

with respect to Lpiliéé} subject only to the constraint that
*
Py 2 Q0 for all 1éS.
The next step is to set all the partial derivatles of

6-4 equal to zero. For any 1€S,

§—p[(N=1)/G(N) + «|> p, - p°T:U

1€S
1 G(N=1)/G(N) + o
Py
Now LB = ‘II'T (p.u_/u,)™3
3p, T e
EZZhJeN
J=1
= E ni(piuo/ui)ni (u /u)-TrpJ O/U)
injﬁN j?{i
=1

*d, which 1s known as a Lagrange multiplier, 1s treated as a
constant during the optimization process. After the optimal
values of {p,|1¢S} are obtained (as functions of «),

the value of "« 1s selected so that the constraint > p,=p T
1s satisfied. ieS

160

=L 111‘ (p g 1" 3

pi‘;—————

ZZ:h £N

G(N)Q () /py

This last step follows from the definition of Q1 given
in equation 5-11. 'In this discussion the dependency of Q1
on N 1s being explicitly represented since expressions of

the form Q, (N-1) will also be needed.
A

Continuing with the analysis,

9_ G(N-1) _

G(N) G(N-1) Q,(N-1)/p; =~ G(N-1) G(N) Qi(N)/p1

op, G(N) a(N)?

G(N=1) 1
o 'éTETI 5 [éi(N-l) - Qi(N)]

Hence the partial derivative of 6-4 with respect to p; 1is

W & [- am] v o«

Setting this derivative equal to zero ylelds

G(N=-1 1 .
o= S ™ (0,00 - o (-1) |

Since all the partial derivatives are equal to zero at the
point of optimal performance, the following relationship

must hold for any 1, j«S at this point:

161

= L - — G(N=1 Lr ' _ \J o
_lT_Tl b [(K) = Qi(J-l)] = G(N pj LQJ(J) QJ(N 1)]

Equivalently,

= 6-5

By equation 5-10,

N
_ k G(N-k
Q (N) = ﬁéT (pyug/uy) _éTﬁTl

Thus

N-1
~ k [G(N-k) G(N-1-k)
Q,(N) - Q,(N-1) = Eg; ST [G(N) = G(N-1)

+ (pyu_/u)" /G(N)

Setting ¢, = 1/G(N)
G(N-k) G(N-1-k)

and Cp = N T eN-D) for k=l:25: e N=1
N k
o E ck(1 Uy /u)
yields pi = k§1
J EEZ k
k=1 ck(pjuo/uj)

This completes the derivation of equation 6-2. To

derive equation 6-3, note that

o 2 B
A, _ 3 gn-1) G 57 GN-1) - G(N-1) g5 G(N)
aui [0) aui G(N = i

G(1)?

162

o
Now =— G(N)
dui

I
Q.
o
I
C
Il:jh
[
e
C
=4
~
e
C

Soh e S

= -G(I\I)'Qi(N)/u1

-G(N)-G(N-1)-Q, (N=1)/u; + G(N-1)-G(N)-Q, (N)/u,

o
Thus =<=— A =
aui o) G(N)2

G(N-1) 1
= “G(N) E;[Qi(N) = Qi(N"l)]
A, ,

This in turn implies

:I>l£i
[

B

163

Substituting in equation 6-35,

We
Py Ki ﬁ%1A°
Py Y3 ow
Ao ouj (o}
Therefore
Aopi/u1 B g%iAo
Aopj/uj) -ZEJAO

Agpy/vy AU D /Uy Ay

But by the Conservation Law.

Aopj/uj Aouopj/uj Aj
N
A1 auiAo
Thus 2 = = at the point of optimal performance.
ou 4o Equation 6-3 then follows immediately.

164

PAGE TRAFFIC BALANCING

Froblem Definition

Multiprogramming systems which make use of paging pro-
vide another area of application for the central server
model. An important feature of such systems 1is that, at any
given time, some of a program's pages will reside in main mem-
ory while others reside in auxiliary memory. When a program
references a page which is not in main memory, that page
must be transferred in from auxiliary memory. In order to
make room for this page it 1s sometimes necessary to first
transfer a page out of main memory. These page transfers
are handled by a PPU which will be called the page transfer
processor.

An interesting aspect of paged systems is that it is
possible to vary the number of page transfers per program by
varying the total number of pages that a program is permitted
to maintain in main memory at any time. That 1s, in systems
where only a small number of pages from each program are
maintained in main memory, references to pages not in main
memory will be fairly frequent, and so the total number of
page transfers per program will be high. On the other hand,
in systems where a large number of pages from each program
are maintained in main memory, references to pages not in
main memory will be relatively infrequent once the initial

set of pages is loaded, and so the total number of page

165

transfers per program will be fairly low. Thus it would
appear advantageous to maintain a large number of pages
from each program in main memory.

However, with the size of main memory fixed, systems
which maintain a small number of pages from each program in
main memory will have a large number of programs in main
memory at any time, which is to say a high degree of multi-
programming. This will tend to improve system performance
by enabling other programs to utilize the CPU and various
PPU's while the page transfer channel is carrying out a
transfer for a particular program. Hence there are also
advantages to maintaining a small number of pages from each
program in main memory. This suggests it should be possible
to optimize system performance by specifying the number of
pages which each program may maintain in main memory in a
way that keeps the number of page transfers per program
relatively small while allowing the degree of multiprogram-
ming to be relatively high. This optimization problem,
which will be referred to as page traffic balancing, can be

partially resolved with the aid of the central server model.

Parametric Specification of Page Traffic Behavior

Before approachiné this problem it 1s necessary to have
some way of specifying the relationship between the expected
number of page transfers per program and the average number

of pages each program is permitted to maintain in main memory.

166

Note that the degree of multiprogramming is equal to the
total number of pages of main memory divided by the average
number of pages each program is permitted to maintain in
main memory. Assuming the total number of pages of main
memory 1s being held fixed, it is thus sufficient to express
the relationship between the expected number of page trans-
fers per program and the degree of multiprogramming of the
system.

Generally speaking, the expected number of page transfers
per program increases as the degree of multiprogramming in-
creases. This increase is comparatively gradual at first,
but then accelerates abruptly after the degree of multipro-
gramming passes a certain critical threshold. This abrupt
acceleration is due to a phenomenon known as thrashing which
was originally analyzed by Denning (30).

Page traffic behavior is also affected by the page re-
placement algorithm. This algorithm determines which page to
remove from main memory at times when it is necessary to make
room for a new page. A good page replacement algorithm will
remove a page which 1s not likely to be referenced again in
the near future, thus reducing unnecessary page transfers.

It is not the purpose of this discussion to present the
detalls of various page replacement algorlithms or an analysis
of the thrashing phenomenon, but merely to characterize these
factors in a relatively simple manner which preserves their

essential features and also permits systematic variation of

167

key parameters.
Figure 6-2 illustrates such a characterization. The
curves which appear in this figure correspond to instances

of equation 6-6 for which B=1, T=10 and A=0.5, 1.0 and 2.0

A
F(N) = B-[}‘—:{I-] bt

Equation 6-6 expresses the expected number of page transfers
per program (i.e., F(N)) as a function of the degree of
multiprogramming (i.e., N) and three parameters: A, B and T.
The parameter T represents the degree of multiprogramming at
which the thrashing phenomenon causes the expected number of
page transfers per program to become virtually infinite.
Since thrashing continues if N is increased beyond T, it
will be assumed that equation 6-6 defines F(N) only for: the
case in which 14N<T . For N2T F(N) is assumed to be infinite.

Next note that F(N) = B when N = 1. Hence B is the
expected number of page transfers per program when only one
program 1is maintained in main memory at any time. Assuming
that main memory is large enough to accomodate entire pro-
grams in this case (i.e., no overlays are necessary), B is
then equal to the expected number of pages referenced per
program. It is assumed in Figure 6-2 that B = 1, but by
simply reinterpreting the scale along the vertical axis it
is possible to represent any other value of B.

The exponent A in equation 6~-6 1s intended to represent

the relative efficiency of various page replacement algorithms.

168

F(N) = Expected number of page I
y transfers per program
12 w A=2‘ A=1
A
T
11 | F(N) = B-[ﬁ]
Aw % 1. 2
10 3
B=1
9 T = 10
Bl
T
6
5
y |
3]
21
1

S W v — T] =) S 23 S om ey Svm— e

1 2 3 4 5 6 7 8 9

N = Degree of multiprogramming

Figure 6-=2

FPage Traffic Behavior

169

If N is held constant then F(N) will decrease as A decreases.
This corresponds to the fact that more efficient page replace-
ment algorithms will result in a smaller expected number of
page transfers per program when all other factors are held
fixed.

No particular correspondence between specific values of
A and actual page replacement algorithms is intended, although
the value of A associated with relatively inefficient al-
gorithms such as FIFO will be greater than the value associ-
ated with more efficient algorithms such as LRU. It is
assumed that A 1s restricted to positive values (i.e., A>0).
Hence the thrashing effect will always cause the expected
number of page transfers per program to go to infinity as N
approaches T. This corresponds to the fact that thrashing
will occur in any system in which main memory is over-
commlitted, regardless of the page replacement algorithm used.
However, Figure 6-2 illustrates that inefficient page re-
placement algorithms cause thrashing to become a serious

problem at significantly smaller values of N.

Relation Between Page Traffic Behavior and Network Parameters

Assume that the three parameters in equation 6-6 have
all been specified, and suppose that it is desired to opti-
mize system performance with respect to N. To treat this

problem using the central server model of multiprogramming,

170

let the page transfer processor correspond to the 1§£ PPU in
the network. In addition, assume that the following para-

meters have been specified:

rj = total expected number of processing requests directed
to the ,jE-Pl PPU per program (j=2,3,...,L)

sj = expected amount of processing time for a request
directed to the ,jE-Pl PRU (J=1:24 «swgl)

C = total expected amount of CFU processing time per program

Note that these parameters closely correspond to those
used in the buffer size determination problem, the major

difference being that s, is independent of N in the case of

1
page traffic balancing since the time to transfer a page to
or from main memory 1s not assumed to be dependent upon the
degree of multiprogramming of the system. Hence u'j = 1/53
for Jj=1 as well as for Jj=2,3,...,L

The other network parameters, which do depend on N, may

be determined as follows. The total expected number of PPU

L
processing requests per program is F(N) + > r'j . Thus
=2
L
1/pO - 1=F(N) + > r, by equation 4-4 .
=2
L
Hence p. = 1/(1+4F(N)+>_r.)
o ==

Paralleling the argument presented in the buffer size de-

termination problem,

Py/Py = T, tor w89, swe i

17

L
so that Py = T4p, = rJ/(1+F(N)+ZZ rj)
J:

F(N)

Also pl/pO

k.
F(N)p, = F(N)/(14F(N)+>__ rj)

which implies Py
=2

Finally 1/(uop0) C
L
1/(pOC) = (1+F(N)+§2 rj)/C
J=

Thus

ot
I

Optimization Equations

Summarizing the results of the previous section, the

page traffic balancing problem is the problem of optimizing

L

'!T n
Z j=1 (pjuo/uj) J
L

an‘—-N-l
J=1
Aouopo E L Y5Ps
> T (pgug/ug™s
J=1
L
EZ:hJ&N
=1
with respect to N
L
where B, = 1/(1+F(N)+>__ rj)
J=2
L
Py = F(N)/(1+F(N)+;(;2' ry)
' L
p. = r,./(1+4F(N)+> __r,) for J=B4 By sewsk
J J =2 J
L
o (1+F(N)+:E::rj)/c
(o] J=2
Hip ™ 1/Sj tor JB=l.2: 3eaeinels

172

It 1s assumed that N is permitted to vary continuously in the
interval [1,T) and that non-integral values of N are evaluated
by linear interpolation as in the case of buffer size deter-
mination.

Another similarity with the case of buffer size deter-
mination is that many of the dependencies on N cancel each
other out in the expression for Aouopo. For example, with

XJ agaln defined as pjuo/uj, 1t Follews that For J=e. Jdcssal:

g = Bgu Sy

i L
r /(1+F(N)+§] (1+F(N)+§ s i L o

1/sJ

= rjsj/C

Xy = Pyuy/yy

I L
[F(N)/(1+F(N)+§ rJE].l:(1+F(N)+§ rj)/C]
J=2 =2

1/s1
= F(N)sl/C
Finally,
L L
up =|(14F(N)+> r)/C].[l/(1+F(N)+EE: r)]
o° o =2 J =2 J
= 1/C

173

Since u.p, 1s independent of N, this factor can be omitted
from the original optimization problem so that the problem
becomes ore of optimizing AO - rather than AouopO - with
respect to N.

Thus the page traffic balancing problem is the problem

of optimizing

- -
E] (xj) J
T J=1
E nJéN

3=1

with respect to N

where X, = F(N)sl/C
XJ = rjsj/C for J=B. 35 sesub
A
N) = B-| I=1
i) = 5[2%]
and non-integral values of N are evaluated

by linear interpolation

Analysis

Assuming that the program population and the size of

main memory are held constant, the two most obvious ways

174

to improve the performance of a paged computer system are to
improve the page replacement algorithm (i.e., decrease A)
or to increase the speed of the page transfer processor
(1.e., decrease sl). In order to determine the relationship
between these two factors, uy (u1=1/sl) was allowed to vary
from 0.1 to 4.0 while A was set to either 0.5, 1.0 or 2.0
For each value of uy and A the optimal value of N was ob-
talned by a numerical search procedure and the associated
value of Ao was computed. The other parameters in the

=1, C=1000; L=4.

model were: B=1000, T=10; r.,=1000, s

J d
The outcome of this optimization procedure is presented
in Figure 6-3 . As anticipated, optimal performance is im-

proved both by decreasing A and by increasing u It is in-

1°
teresting to note that decreasing A from 2.0 to 0.5 improves
performance from .137 to .167 (i.e., by 29%) when u; = 0.2,
while the same change in A improves performance from .490
to .659 (1.e., by 34%) when u, = 2.0 . Thus the benefits
of using a better page replacement algorithm may be more
significant for fast page transfer processors than for slow
page transfer processors. This illustrates the point that
choice of page replacement algorithm may be more - rather
than less - critical as the speed of the page transfer pro-
cessor lncreases.

This section illustrates one way in which central server

models can be used to analyze the problem of page traffic

balancing. There is obviously much additional work to be

275

Ao = Relatlive performance

1]

1 2 3
u = Speed of page transfer processor

Figure 6-3

Effect of Page Replacement Algorithm and Speed of Page

Transfer Processor on Relative Ferformance

176

done in this area, particularly in determining the nature of
the function F(N). Note that F(N) could be determined em-
pirically for different page replacement algorithms by direct
measurement of actual systems. These emplrical results could
then be combined with the optimization equations of this
section to explore the behavior of paged systems in consider-

ably greater depth.

177

CHAPTER 7: EXTENSIONS

INTRODUCTION

The central server model of Figure 4-3 incorporates a
set of general features which are common to virtually all
large scale multiprogramming systems. However, when con-
structing models of particular systems it 1s sometimes desir-
able to extend the model by adding certain special features
such as multiple CPU's, interactive time-sharing terminals
and sector scheduled drums. It may also be desirable to
examine the consequences of random fluctuatlons in the degree
of multiprogramming (i.e., the value of N). This chapter
discusses a number of relatively simple extensions which can
be made to the basic central server model in order to incor-
porate features of this type.

Some of the extenslions presented in this chapter are
rather obvious, given the basic model of Figure 4-3 and the
gsolution techniques developed by Jackson (48) and Gordon and
Newell (41). The reason for including these extensions
along with the others is to provide a compact point of refer-
ence for future work in this area. In addition the entire
sét of extenslons serves to 1llustrate the generality and

flexibillity of the original central server model.

178

NEW PROCESSOR TYPES

Multiple Processors and Channels

In the diagram of Figure 4-3 each service facility
(L.e., circle) 1s understood to represent an individual pro-
cessor or server. Suppose instead that, for j=0,1,2,...,L ,
the :j-t-"-2 service facility represents a set of mJ identical
servers which can operate in parallel. For example, there
may be a number of CPU's at the central service facllity or
a number of data channels assocliated with a set of disk
drives at one of the peripheral service facilities. Thus
each mJ 18 a positive integer which may in some cases be
equal to one.

To obtain the steady state distribution for such a net-
work assume first that the time required to complete a ser-
vice request at one of the servers in the JEE service facil-
ity 1s an exponentially distributed random variable with
mean 1/“3' It then follows immediately from equation B-15
of Appendix B that the steady state distribution is given as

'T-T (pug /uJ)
Plnguny,-oonp) =gWY Aytngy || A inp) e

k! if k& nm

where AJ(k) = 7-2
myt(m yK=By 4f k>m

179

Equation 7-1 represents an entirely strailghtforward
application of the solution techniques developed by Jackson
and Gordon and Newell. Computational algorithms for evalu-

ating equation 7-1 appear in the second half of Chapter 5.

Dedicated Peripheral Processors

Dedicated peripheral processors correspond to devices
such as the interactive terminals of a time-sharing system.
As 1n the case of multliple processors and channels, 1t is
assumed that all the dedicated peripheral processors of a
particular type have 1dentical service time distributions
and ocan operate in parallel with one another. However, it
1s assumed that there is a dedicated processor of each type
for each program in the system. Thus there are never any
queueing delays associated with service requests for dedicated
peripheral processors.

From a mathematical standpolint a set of dedicated
peripheral proocessors corresponds to a service facllity con-
talning a sufficlently large number of parallel servers to
guarantee that no service request ever has to wailt in a
queue. For a closed network of N circulating customers,

N parallel servers will obviously suffice. Hence the assump-
tion that the 122 service facility in a central server net-
work corresponds to a set of dedicated peripheral servers

is equivalent to the assumption that the steady state distri-

bution of the network is given by equation 7-1 and that

180

m, = N 1in equation 7-2. Note that m, = N implies
a,(k) = k! for all k et

It 1s convenient to use equation 7-3 to characterize dedi-
cated peripheral processors since this equation contains no
explicit reference to the value of m, .
Even though dedicated peripheral processors and multiple
processors and channels can be treated by the same mathe-
matical techniques, they are not conceptually identical.
This follows from the observation that multiple processors
and channels are regarded as functionally equivalent, which
1s to say that each one can service a processing request
from any program in the system. On the other hand, each
dedicated peripheral processor is restricted to serving the
processing requests of a particular program. The two con-
cepts are mathematically equivalent because it makes no

difference which processor is serving which request as long

as all requests can be served in parallel.

Queue Dependent Processors

The discussion of rotating storage service disciplines
presented in Chapter 2 indicates that it 1s possible to im-
prove the performance of devices such as disks and drums by
employing scheduling algorithms such as SATF (i.e., shortest
access time first) and SSTF (i.e., shortest seek time first).

Under these scheduling algorithms the expected service time

181

per processlng request becomes a function of the number of
requests waltlng for service at the facility. In other
words, service times become queue dependent.

Suppose that the 1-t-h service facility in a central
server network consists of a queue dependent processor whose
servlice time is an exponentially distributed random variable
with mean 1/(ui-ai(ni)) where n, 1s the number of programs
at the facility and ai(ni) is an arbitrary positive valued
function. It then follows from equation B-15 that the steady
state distribution for thls network 1s given by equation 7-1

with Ai(k) defined as follows:

1 if k=0

k

| | al(n) if k>0
n=1

Smith (77) presents an analysis technique which can be
used to determine the function al(k) for the case in which
the 18 gervice facility 1s a drum employing an SATF sched-
uling algorithm. The references 1n the sectlon of Chapter 2
dealing with rotating storage service disciplines are also

relevant to this problem.

182

*
Non-Exponential Dedicated Peripheral Processgors

Suppose that the JEE service facility in a central
server network consists of a set of dedicated peripheral

processors whose service time density function is

u t

i, B ey, 2

h-u e 3J,1° + (1=h)-u

J.l 7‘5

3,2
Expression 7-5 represents a hyperexponential density func-
tion of the second degree. It is assumed that 0 <h <1

and uJ.1 # uj,2'

Expression 7-5 implies that the amount of service time
per processing request for the J-t'-Q service facility is distri-
buted as uJ.le-uJ.lt with probability h and distributed as
uj.ze'uj.zt with probability 1-h. Suppose that Py is the
probablility that a program will generate a processing request
for the JEQ service facility after completing a CPU process-
ing request. The JEE service facility may then be concep-
tually divided into a pailr of service facilities as illus-
trated in Figure 7-1.

Partitioning the JEE service facility in this way
creates a new central server network with exponential service

times at all points and a state description vector of the

form (no'nl"'"nJ-l'nJ.l'nj,Z'nJ+1"'"nL)' The steady

*The material presented in this section was suggested by
C.G. Moore and S. Kimbleton of the University of Michigan.
Some of this material appears in Moore's Ph.D. thesis (62).

183

NEW PHOGRAM

P
14’]:}‘@3——)
Ps e
= u,
K=
j¥B fac111ty

h'pj

ooooooooo

Filgure 7-1

Hyperexponential Dedicated Peripheral Processors

184

state distribution for this network willl have the general
form given in equation 7-1 and can be immedlately written
down in any particular case. Since each state (no'nl""'
nj.l'nj.Z""'nL) in the conceptually modiflied network maps
into the state (no.nl.....nj.1+nj.2.....nL) in the original
network, the steady state distribution for the original

network 1s gliven by
n

P(no.nl....,nj.....nL) = E P(no'nl'""nj.l'nj-nj.l""nL)

nJ.1=0
7-6

Note that the same solution technique can be used for hyper-
exponential distributions of arbitrary degree.

To 1llustrate another method of constructing non-
exponentlal service times, suppose that the J-t-n service
facility in a central server network consists of a set of
dedicated peripheral processors Whose gservice times are the
sum of k exponentially distributed random variables with
means 1/uy 3. 1/uy 50 --.s L/uy , . The 8 gervice facil-
ity can then be conceptually divided into k individual expo-
nential service facilitles operating in serlies as illustrated
in Figure 7-2. While the network in Figure 7-2 does not
entirely conform to the specifications of the central server
model, 1ts steady state distribution can still be obtained
rather easily using the methods of Appendix B.

Note first that the matrix P of branching probabilities

has the following form:

185

NEW PROGRAM

‘J;:::P
u
o

P
L E\-@
P2
L
B facility
P3: o :
D 4.1 e d
PL 3:](N\
uy
Figure 7-2

Erlang Sum Dedicated Peripheral Processors

186

row j-—

row j+tk-2->

Tow Jj+k-1-

Py 0 0 ... 0

0 0 0O ... ©

O 0 0 0
o 1 0 0
B B A 0
0O 0 0 1
0O 0 0. 0
0O 0 0 0
187

?olumn J+k-1

Py
0

O LI

The equation y = yP then becomes

yo = poyo + yl + y2 + s F yj-l + yj,k+ y3+1 + .0 + yL
Y1 = P13,
Y2 = pzyo
Y3-1 ® P41,
yj.l = prO
Y2 ™ es
P43 ™ 25,8
g,k ™ ¥g 501
Y341 = P3417
yL e pLyo

It 18 thus clear that the vector

¥ = (350Py¥ePpTge e sPy g TooPy¥geeecsPy¥oPyygYoeesPY,)

t o

k components
satisfles the equation y = yP for any value of Yor and in
particular for Ty, ™Yo The steady state distribution for

the conceptually modified network can then be immediately

188

obtalned from equation B-15. The steady state distribution

for the original network 1s then

P(no.nl.....nj.....nL) = E P(no"“'nJ.l""'nj.k""'nL)
k

2Ny 4=ny Pl

The method used to obtain equations 7-6 and 7-7 can
obviously be extended to include arbitrary parallel and
series combinations of exponential components, although the
solution of the equation F - zl’ may then no longer be rou-
tine. Unfortunately there appears to be no easy way to ex-
tend this technique to shared (i.e., non-dedicated) service
facilities of the type used in the original central server
model. The problem is that such service facilities create
additional queueing delays which make it difficult to char-
acterlze service times as simple combinations of parallel
and serles exponential delays. However 1t i1s still possible
to write down the complete set of equilibrium equations and

to attempt to solve them directly for specific cases.

»*
Hyperexponential Central Processors with Processor Sharing

The notion of processor sharing was discussed at some
length in the section of Chapter 2 dealing with quantum con-

trolled service disciplines. In this sectlion processor

*The material presented in this section was suggested by
F. Baskett of the University of Texas.

189

sharing will simply be regarded as the 1limit of a round robin
service discipline in which the quantum size has shrunk to
zero. Thus, Af there are n, programs present at the CPU, each
will receive l/no of the CPU's processing capacity.

Assume next that the amount of (full capacity) service
time per processing request is a random variable with hyper-

exponential density function of the form

- t t

h-uo.l-e o,1° + (l-h)-uo.z-e'uo.2
Applying the technique of Figure 7-1, the CPU may then be
conceptually divided into a palr of parallel exponential
service facllitles as 1llustrated in Figure 7-3. However
Figure 7-3 cannot be considered as an exact analog of Figure
7-1 because it 1s assumed in Figure 7-3 that there is only
a single CPU, and that this CPU 1s operating under a pro-
cessor sharing service discipline. Thus the assumption of
a service facllity composed of dedicated processors is not
valid in thils case.

Continuing with the analysis, suppose that there are
no'1 programs present at the upper CPU service facllity and
no.2 programs present at the lower CPU service facility.
Each program thus recelves 1/(n°.1+no.2) of the CPU's total

capacity. It then follows that the rate of departure from
n

the upper facllity is —Oal - u and the rate of de-
n +n 0,1
o,1 0,2 A
parture from the lower faclillity 1is ;——Qiﬁ———-uo’z .
o,1 0,2

190

"L Huy)
25 (u,)

NEW PROGRAM 1

h-po X
h uo
; (1-h)po
1-h h'po ‘
S (1-n)p,
y
NEW PROGHAM 2 P
e ()
Figure 7-3

Hyperexponential CPU with Processor Sharing

191

Note that the processing rate of each service facility
1s not solely a function of the number of programs present
at that facility. Thus it 1s not possible to use the solu-
tion techniques developed by Jackson and by Gordon and Newell
in this case. It 1s of course still possible to write down
the complete set of equilibrium equations and attempt to
solve them directly. Baskett (8) has successfully carried
out such an analysis for the case in which the only other
component in the network is a set of dedicated exponential
peripheral processors.* An extenslon of Baskett's work to
the full central server model would be of considerable

interest.

*This corresponds to the finlte source Polsson arrivel pro-
cess classifled as type Mf in Chapter 2.

192

VARIATIONS IN THE DEGREE OF MULTIPROGRAMMING

A Specialized Time-Sharing Model

There are a number of ways in which the central server
model can be extended to include random fluctuations in the
degree of multiprogramming (i.e., the value of N). One
possible approach is related to the observation that such
fluctuations are almost always present in systems with inter-
active time-sharing terminals since programs which are wait-
ing for responses from these terminals are not normally
maintained in main memory. Thus the true level of multi-
programming in such systems is equal to N minus the number
of programs walting for terminal I1/0.

Interactive time-sharing terminals have already been
discussed in this chapter in the section dealing with dedi-
cated peripheral processors. However it is necessary to
extend the central server model still further to explicitly
represent the fact that programs lose and then regain their
main memory allocation as they go into and out of terminal
wait states.

One simple way of representing this phenomenon is to
assume that the system contains a PPU which will be called
an overlay processor. Basically an overlay processor saves
regions of main memory on auxiliary storage and then loads
program and data segments into these regions. It is assumed

that the overlay processor functions during the normal course

193

of program operation as well as at times when programs
attempt to regain their main memory allocation after a ter-
minal walt. Thus the overlay processor 1is similar in many
respects to a page replacement processor.

Figure 7-4 represents a system containing an overlay
processor and a set of interactive time-sharing terminals.
Note that programs completing terminal I/0 must obtain
service from the overlay processor before proceeding to the
CPU queue. In addition programs make requests for service
from the overlay processor during their normal course of
operation with probability Pr_1°

The steady state distribution for the network in Figure
7-4 can be readily obtained using the solution technique
discussed in Appendix B. Note first that the matrix P of
branching probablilitlies has the following form:

= =
0 » Py oo Pr.1 P,
1 0 0 0 o0
1 0 0 * e 0 0 0
P = :
1 0 0 0o o0
0 0 0 = 1 0
a o

The equation y = yP then becomes

194

Overlay
Processor
P
s
Interactive
Terminals
Figure 7-4

Speclalized Time-Sharing Model

195

0O
¥, = Py7,
Y2 = P¥,
Prd ™ Pred¥s v P
I, = Py,

Thus the vector y = (yo.plyo.pzyo....,(pL+1+pL)yo,pLyo)

satisfles the equation y = yP for any value of Yo and in
particular for Yo = - The steady state distribution for
the network can then be immediately obtained from equation
B-15. -

Note that Figure 7-4 contains no NEW PROGRAM path.
This is to emphasize the fact that, while the original
central server model is esgsentially a batch processing model,
the model in Figure 7-4 1s more properly regarded as a time-
sharing model. Thus it is no longer sufficient to use the
number of programs processed per unit time as the sole
measure of system performance. Instead it 1s necessary to
introduce measures which take response time and total number
of active terminals into account. One possible measure is
the maximum number of active terminals which can be supported
at a given level of responsiveness. However thls measure

may not prove satisfactory for all applications, and so

196

additional work may be necessary before the model in Figure
7-4 can be used in conjunction with various optimization

procedures.

An Open Network Model

An entirely different approach to the problem of fluc-
tuations in the degree of multiprogramming is to assume that
new programs arrive at the system in a random fashion from
an unspecified external source and that programs disappear
entirely from the system after they have completed their
processing requirements.

Figure 7-5 1llustrates such a system. It 1s assumed
that the external arrivals are generated by a Poisson arrival
process with mean rate ux'ax(N) where a, 18 an arbitrary
non-negative function of N, the total number of programs in
the system at any given time. In addition it 1s assumed
that the probability that a program wlll exit from the sys-
tem after completing a CPU processing request 1s equal to
P,- Note that Figure 7-5 can be regarded as a standard
central server network in which the NEW PROGRAM path has
been cut open to permit external arrivals and departures.

Since Figure 7-5 18 not a closed network 1ts steady
state distribution cannot be obtained using the method of
Gordon and Newell. However Jackson's more general solution
technique is clearly applicable. First note that the matrix

P of branching probabilities has the following form:

197

Py :() ;
._9{:)_”2 >_.;.1

\ .
apag) — @) :

Figure 7-5

Open Network Model

198

- -
o pl p2 LA B] pL
1 0 0 .o 0
1 0 0 he 0

P =
1 0 0 0 i

Next note that arriving programs all proceed with probability
one to the central server. Thus the vector which character-
izes the branching probabllities for programs arriving from

external sources 1s
e = (L 0O s s

To obtaln the steady state distribution for the network
1t 1s necessary to solve the equation y=¢e+ yP for the
vector y. Broken down into individual components, this
equation 1is

y. =1+ ¥y +y, + ... 4 ¥,

[0}

yl = plyo
vy = p2yo
yL = pLyo

Thus the solution vector 1is

Y = (1/pgs Py/Pye Po/Pye <=+ PL/P)

199

It is now necessary to define auxiliary functions
similar to those defined in Appendix B.

1 ifn=20
Let Ax(n) =

n

TT ax(k) if n)0
k=1

Assume that the values of AJ(n) for j=0,1,2,...,LL are

defined as in equation B-11. Finally 1let

N = no + n1 + n2 + s + nL

It then follows from the work of Jackson (41, p. 138) that
the steady state distribution for the network in Figure 7-=5

is given by

L
(1/u_p)" | l (py/usp)3
p) N oo N L)
P(n snyseeeynp) = & (u))” A_(N) -—(—T-Ao n_ s _T_)_AJ n

where the normalizing constant G is defined as

—

L
(o) n n
(1/up.) o ‘ ‘ (ps/usp.))
N J ™3
6= > fmMam > gy 19 e v o
N=0 L
Zj_o"f“

e

Since the total amount of main memory is limited, it
becomes increasingly unlikely that new programs will be
admitted to the system as the number of programs already in

the system grows larger. The values of ax(N) can be speci-

200

fied in a way that reflects this fact. If there exists

some upper bound on N beyond which no programs can be ad-
mitted (i.e., ax(N) =0 for N>M), then the system can

be converted to a closed system with M circulating customers
as indicated in Figure 7-6. The processing rate of the xEﬁ

server in Figure 7-6 is assumed to be ux.ax(M-nx) where n,

1s the number of customers present at the xEh server and a

x
is the original external arrival rate function. Note that

the value of M-n_ in Figure 7-6 corresponds to the value of

N in Figure 7-5.

201

Pi = < > ;
B < >_ oy

Figure 7-6
Equivalent Closed Network Model

202

CHAPTER 8: THE MODEL IN FERSPECTIVE

RELATION TO OTHER WORK

Introduction

The analytic network models discussed in the final
section of Chapter 2 bear very little resemblance to the
central server model presented in this thesis. However
Smith's (76) numerical queueing network model does fall
within the central server framework. In addition, both
Arden and Boettner (6) and Fenichel and Grossman (33) have
discussed certain non-queueing theoretic aspects of central
server networks. Thus, despite the almost total lack of
analytic studies of complex queueing network models, the
general schematic framework of the central server model is
not entirely without precedent.

In 1light of these remarks it is interesting and some-
what surprising to note that four completely independent
analyses of the central server model have been published in
the past few months. The first of these 1s contained in a
Japanese language article by Tanaka (79) which appeared in
October 1970. Analyses by Arora and Gallo (7) and Buzen
(12) then appeared concurrently during the first week of
April 1971 in conjunction with the SIGOPS Workshop of System

Performance Bvaluation. Finally, a Ph.D dissertation deal-

#This Workshop was held at Harvard University on April 5-7,
1971. Proceedings may be obtained through the ACM.

203

ing with the central server model was presented by Moore
(62) later in April 1971. It should be noted that Moore
also discussed his model during the 38En National Operations
Research Society of America Meeting held in October 1970.
However no conference proceedings were published.

The relationship between the work presented in this
thesis and the work of Tanaka, Arora and Gallo, and Moore
will now be examined on an individual basis. Following this
a brief account of the material that is unique to this

thesis alone will be presented.

The Work of C.G. Moore

The original motivation for Moore's model was provided
by the University of Michigan Terminal System (MTS). Since
MTS is primarily a time-sharing system the model includes
dedicated interactive terminals of the type discussed in
Chapter 7.

Moore's derivation of the steady state distribution 1is
based on the work of Gordon and Newell (41). After obtain-
ing the steady state distribution Moore uses the results of
a series of MTS measurements to assign numerical values to
model parameters. The model is then used to make behavior
predictions for MTS. Moore found a reasonable level of
correlation between predicted bahavior and actual behavior,

thus validating the model for this particular case.

204

From the point of view of this dissertation the most
significant aspect of Moore's work is that it demonstrates
that the assumptions which underlie the central server model
are sufficiently realistic to permit the model to be of
practical value in predicting the performance of actual

multiprogramming systems.

The Work of S.R. Arora and A. Gallo

Arora and Gallo's development of the central server
model grew out of consideration of an airline reservation
system. As a result the peripheral servers in their model
are ldentified with levels within a memory hierarchy rather
than more general peripheral processors. After presenting
the model in this somewhat specialized context, Arora and
Gallo proceed to derive the steady state distribution with-
out utilizing the results of Jackson (48) or Gordon and
Newell (41). They then use the performance predictions of
the model to evaluate alternative system configurations,
using actual cost figures and functional characteristics to
characterize the hardware and using empirically obtained
program behavior statistica to characterize the processing

load.

In a separate section of their paper Arora and Gallo
consider the problem of optimal loading of program and data
segments into the levels of the memory hierarchy under the

assumption that the size of the various prograr and data

205

segments and the capacity of the levels in the hierarchy are
given as parameters. Since the loading strategy determines
the relative frequency with which the levels in the hierarchy
will be accessed, this problem is related to the peripheral
procéssor utilization problem analyzed in Chapter 6. How-
ever the objective function that Arora and Gallo attempt to
optimize does not take into account the queueing delays in
the system. Instead it 1s simply a linear function of the
access times and transfer rates of the non-executable memory
levels plus the cycle times of the executable memory levels.
The speclalized form of the objective function reduces the
optimization problem to a problem in linear programming

which 1s then solved by Vogel's method.

Arora and Gallo's choice of objective function is some-
what surprising in light of the fact that the overall measure
of performance they use to evaluate alternative system con-
figurations does indeed take queueing delays into account.
Thus in the extreme case where the fastest level of non-
executable memory has virtually unlimited capacity, Arora
and Gallo's optimal loading strategy will place all non-
directly executable program and data segments into that level
even though this will almost certainly result in excessive
queueing delays and a sub-optimal level of performance
(assuming that the level of performance is determined by
the measure developed in the other part of the paper). This

difficulty is avoided in the analysis of Chapter 6 since

206

there the objective function and the measure of system per-

formance are one in the same.

Tanaka's model is similar to Moore's in that it is
oriented towards time-sharing systems. Hence this model
also includes dedicated interactive terminals of the type
discussed in Chapter 7. The major goal of this paper is
the derivation of the steady state distribution and related
expressions such as queueing delays and overall response
time. No attempt is made to apply the model to theoretical
problems of the type presented in Chapter 6 or to validate
the model by consideration of empirical data.

Tanaka's derivation of the steady state distribution
for central server networks having an arbitrary number of
parallel servers at each service facllity was carried out
from first principles without utilizing the results of
Jackson or Gordon and Newell. This represents a significant
accomplishment even though it is possible to derive this
distribution in a simpler manner by making use of these

related results.

New Material

This thesis treats a number of topics which were not
considered by the previous authors. For example the Con-

servation laws (i.e., equations 5-6 and 5-8) and the fact

207

that the the most highly saturated server has the longest
expected queue (which follows from equation 5-10) represent
new results. In additlon the three theoretical problems
treated in Chapter 6 have not been analyzed elsewhere,
although Arora and Gallo have considered the problem of
optimal peripheral processor utilization in a different
context.

Certain technical points such as the use of the NEW
PROGRAM path to represent program terminations are also
new, Finally, the computational algorithms presented in
the second half of Chapter 5 are new and should be of con-
siderable value in the analysis of any queuelng network
model whose steady state distribution can be derived using
the methods of Jackson and Gordon and Newell. The signl-
ficance of these algorithms thus extends well beyond the

scope of the central server model itself.

208

SUGGESTIONS FOR FURTHER RESEARCH

A number of the earlier chapters of this thesis contain
explicit references to promising areas for future research.
For example, several problems associated with quantum con-
trolled service disciplines are discussed on pages 34 - 36
of Chapter 2, the problem of limited queue size with induced
blocking is mentioned on page 75 of Chapter 3, and the need
for additional research on the problem of page traffic
balancing is cited on page 177 of Chapter 6. 1In addition,
the extensions to the basic model discussed in Chapter 7 can
be used to construct a host of models which closely resemble
particular systems of interest.

With regard to this last point it should be noted that
the construction of models of particular systems or classes
of systems does not in and of itself constitute a research
activity. For example, the construction of a mathematical
model for the purpose of predicting the behavior of an actual
or proposed system generally falls under the heading of
engineering. This is especially true if the mathematical
techniques used to construct the model are highly standardized
and 1f the performance predictions are being used to guide
system design. Since the purpose of this section is to dis-
cuss prospective research problems, such engineering activi-

ties will not be considered further.

209

Research activities are primarilly concerned with inves-
tigating the underlylng factors which influence the behavior
of all systems of a given type. A number of interesting
research problems can be formulated within the framework of
the central server model. One, which in some ways resembles
the buffer size determination problem of Chapter 6, will be
called the program organization problem. The problem is
simple to state. Assume that the total net amount of pro-
cessing time per program is specified for each processor in
a system. Then, taking overhead and the effects of buffer
size on degree of multiprogramming into account, determine
how this total processing load should be organized in order
to optimize system performance. In other words, specify the
values of the model parameters (uo.....uL.po....,pL and N)
which optimize overall performance, subject to the constraint
that the net amount of processing time per program for each
processor 1is constant. The solution to this problem may
provide valuable insight into the relationship between pro-
gram organization and system architecture under a variety of
processing loads.

A somewhat different problem has its initial motivation
in real-time system deslgn. Suppose a particular routine 1s
executed periodically in response to an external interrupt,
and agssume that the time constraints assocliated with the
interrupt are sufficlently lax so that the routine can be

maintained in secondary storage if desired. Then, glven the

210

average time between interrupts, the size of the routine,
the time required to access it from secondary storage, and
the utilization factor for the secondary storage access
channel, specify the conditions under which it is preferable
for the routine to reside in main memory and the conditions
under which it 1s preferable for the routine to reside in
secondary storage. This problem, which will be called the
residency problem, has implications for the management of
monitor segments and utility routines in conventional multi-
programming systems in addition to its original application
to real-time system design.

Still another problem is that of optimizing system per-
formance by altering the external processing load (i.e., the
job mix) in various ways. For example, it is possible to
alter the external processing load by changing the relative
percentages of compute bound and I/0 bound jobs, or by adding
a real-time Job stream with certain processing characteristies.
Since such modifications can affect the average amount of
processing per program, it may no longer be possible to com-
pare systems on the basis of number of programs processed
per unit time. Consequently, solutions to problems of this
type may require the development of new measures of system
performance.

On a more theoretical level, the effects of different
processing time distributions, and especially the effect of

changes in the variance of these distributions, should prove

211

interesting to explore. The work of Baskett (8) which 1is
discussed on page 192 of Chapter 7 appears to be a promising
start in this direction.

In short, the prospects for future research in the area
of queuelng network models in general and the central server
model in particular appear quite promlising., It thus seems
likely that the central server model and its variants will
become the objects of extensive examination 1in the coming

years.

212

APPENDIX A: THE EXFONENTIAL DISTRIBUTION

From a mathematical standpoint, an exponentially dis-
tributed random variable i1s one whose probability density

¥*
at for some a>0. Given this definition

function is ae”
it 1s possible to derive a number of formal properties which
exponentlally distributed random variables satisfy. However,
to gain real insight into the nature of this distribution

it 1s often more helpful to regard it as the limiting case

of an intuitively simpler dliscrete time process.

It 1s useful to have a specific example in mind when
considering the exponential distribution in this light.
Suppose then that in a queueing system each customer pre-
sents the server with the following request: namely, to toss
a particular coiln once every s seconds until a "head"
appears. As soon as the first "head" is reached, the re-
quest 1s considered satisfied and the customer departs.

Suppose the the coin is unbalanced so that the proba-
bility of getting a "head" on any particular toss is h
(0<h <1). Then the probability that the server will re-
quire s seconds (i.e., one toss) to complete a customer's
request 1s equal to h, the probability that the server will
require exactly 2s seconds (i.e., two tosses) to complete

a customer's request is equal to (1-h)h, and in general the

*Equivalently, an exponentially distributed random variable
may be defined as a random variable yhgse cumulative proba-
bility distribution function is 1-e™ 2 for some a> 0.

233

probablility that the server will require exactly ns seconds
to complete a customer's request is equal to (1-h)n'1h.

Note that these formulas are based on the assumption that
the outcome of any particular coin toss is independent of
all other coin tosses. That 1is, each toss is an independent
Bernoulli trial with probability of success equal to h.

This assumption of independence has a number of inter-
esting consequences. First of all, it implies that regard-
less of the amount of service a customer has already received,
the probability that his service request will be completed
on the next coln toss 1is always equal to h. More generally,
if a customer receilving service 1s observed at an arbitrary
point in time, the probability that his service request will
be completed on the nr‘-h coin toss after that point in time
is equal to (1-n)™*"1h. This is true regardless of the amount
of service the customer had already received before he was
observed. Thus, the amount of service a customer has already
received in no way affects the probabilitles governing the
the additional service he can expect to receive. Probabllity
distributions satisfying this condition are known as memory-
less distributions. The particular memoryless distribution
cited in this example is known as the geometric distribution.

When service times are geometrically distributed, a
customer's service time 1s always some integral multiple of
s, the basic coin tossing interval. However, in most situ-

ations of interest service times range over the entire

214

continuum of positive values. It would thus be useful to
define a service time distribution which ranges over this
continuum and which also satisfies the memoryless property.

One way such a distribution might be constructed 1s by
starting with the original example and then letting s, the
interval between tosses, approach zero. This operation
introduces certain complications since the expected number
of coln tosses required to complete a customer's service is
Efi n(1-n)™1h = 1/h , and so the expected amount of time
?;éuired to complete a customer's service request is s/h
seconds. Thus, if s is allowed to approach zero, the ex-
pected amount of time required to complete a customer's
service will also approach zero, and in the limit each
customer 1s served in zero time,

This difficulty may be avoided if h 1s also required
to approach zero as s does. In particular, if the ratio s/h
is held constant as s approaches zero, the expected amount
of time to serve a customer will remain constant even though
service times will, in the limit, range over the entire
continuum of positive real values, Thils limiting process
may be envisaged as one in which coln tosses become more
and more frequent while the probabllity of getting a "head"
on any particular toss becomes progressively less likely.

To complete this discussion it 1is necessary to deter-

mine the distribution of service times in this limiting

case. Suppose that the ratio s/h is kept equal to 1/a for

215

some value of a» 0. Now, for any value of t, the probability
that a customer will require more than t seconds to complete
his service request is equal to the probability that he will
require at least t/s tosses. If [t/s] 1s defined as the
largest integer less than or equal to t/s, then this proba-

bility can be expressed as:

00
S an™ih = (-3
n:E/a+1. &= (1.as)E/a since S/h = 1/& c

Thus, in the 1limit, the probability that a customer will re-

quire more than t seconds of service 1is:

Yim (ea)¥® = i (@-am)?= *
S0 S90
t
= Eim (1-as)1/s:l
S20
= (e-a)t
> e-at

Therefore, the probabllity that a customer's service time 1is

less than or equal to t is JeeToOE

, Which is to say that ser-
vice times are exponentially distributed.
It is stralghtforward to verify that if service times

are exponentially distributed, then the amount of service a

*The equality of the two limits derives from the fact that
(1--a.s)E/El - (1--zav.s)t/S is bounded by as and hence can
be made arbitrarily small. To see this, note that:
(l-as)E/E - (1-a.s)t/S < (1-a.s)E/El - (1-a.s)E/3 o

= as(l-as)E/g from the power
series expansions
as whenever o<s {1/a

N

216

customer has already received in no way affects the proba-
bilities governing the additional service he can expect to
receive.* This fact should also be obvious from the pre-
ceding discussion since, intuitively speaking, at each point
in time the server may be thought of as making a decision as
to whether to eject the customer or to continue serving him
until the next point in time, and the probability that the
server Will decide to eject the customer at any particular
point in time is constant, independent of the amount of
service the customer has already received. The value of
understanding the exponential distribution on this admittedly
vague and intuitive level is that the nature of the memory-
less property, which is so crucial in queueing theory,
becomes immediately apparent.

As a final point, it is worth noting that the geometric
distribution is the only discrete distribution to satisfy
the memoryless property and that the exponential distribu-
tion is the only continuous distribution to do so. Feller
(32) demonstrates these facts in Sections XIII.9 (p. 328)

and XVII.6 (p. 458) respectively.

*The probability that a customer will recelve an additional
v seconds or less of service, given that he has already re-
ceived u seconds of service, is:

u+v -at
Su ae dt e—8Y _ e-a(u+v) i - Lt
== e = mrry = 1l-e = SO ae dt
Su ae dt e

which is the probabllity that a customer Jjust beginning ser-
vice will receive a total of v seconds or less of service.

2il'7

APPENDIX B: A SOLUTION TECHNIQUE FOR
MARKOVIAN QUEUEING NETWORKS

Simple Exponential Servers

The purpose of thls Appendix i1s to review the solution

techniques used by Jackson (48) and Gordon and Newell (41)

to obtain steady state distributions for certain classes of

queueing networks. This first section illustrates the way

in which steady state distributions can be obtained for net-

Works

made up of simple exponential servers. The solution

technique 1s then extended to include queue dependent expo-

nential servers in the second section of the Appendix.

This analysis treats closed queueing networks only.

That 18, it 18 assumed that a fixed number of customers

circulate through the network at all times with no possi-

bility of customers either entering or leaving. Such net-

works
I+41 =

uJ =

will be characterized as follows:

the number of servers in the network.

the processing rate of the ,12-1’-l server for j=0,1,...,L

(1.e., the service time at the JEQ server is an expo~-

nentially distributed random variable with mean 1/“3)'
the probabllity that a customer leaving the 1Eh server
will proceed to the JEE server. Clearly :%g plj =1

for 1=0,1,...,L . =

the number of customers circulating in the network.

218

Assume that it is desired to obtain
P(no.nl.....nL) = the steady state probability that there
are nJ customers present at the ,‘]-t--‘-Q server,

Note that these probabilities are only de-

L

fined for cases in which Z nJ =N and
J=0

OénjéN.

Before determining the steady state probabilities

it 18 useful to define one auxiliary function. Let

0 if n . =0
e(n,) = J
J 1 1f npo

It is now possible to begin the analysis. Note first
that the rate of transition out of state (no.nl.....nL) at

equilibrium is

L
%55 e(ny) uy Pln,,ny,...,ny)

This formula expresses the fact that customers exit from
state (no.nl.....nL) through the JEQ server as long as there
is at least one customer present at that server. If no
customers are present at the JEE server, no transitions are
possible and the factor e(nJ) will set the corresponding

term in the summation equal to zero.

219

Next note that the rate of transition into state

(no.nl.....nL) at equilibriunm is

L L
%Eg %;g e(nj) Uy Py P(no.nl.....n1+1.....n3-1.....nL)

This formula expresses the fact that transitions occur into
state (no.nl.....nL) from state (no.nl.....n1+1.....
nJ-l.....nL) whenever a customer completes service at the

129 server and then proceeds to the JEQ server. Since the

139 server operates at rate u,y and transitions from the 1-‘—:-1’-l
server to the JEE server occur with probability pij' the
rate of transition into state (n_,ny,...,n;) from state
(no.nl.....n1+1.....nJ-1.....nL) is equal to

ui plj P(n°.n1.oou.n1+1.uoo.nj—lgoou.nL)o

This transition rate must be multiplied by e(nJ) to
account for the fact that no such transitions can occur when
nJ-O since state (no.nl.....n1+1.....nJ-1.....nL) cannot
exist in this case. Multiplication by e(nJ) is necessary
because, even though state (no.nl.....n1+1.....nJ-l.....nL)
may not logically exist, a formal value of the function

*
P(no.nl.....n1+1.....n3-1.....nL) will always exist .

#The function P(no.nl.....nL) is given in equation B-8 .
From a logical standpoint this function 1is only defined for

220

Next note that when j=i1 the corresponding term in the

summation is

e(nl) U, Pyy P(no.nl.....ni....,nL)

This term represents transitions from state (no.nl.....nL)
to itself which occur as a result of customers completing
service at the 1EH server and then immediately returning
to that server. The multiplication by o(nl) accounts for
the fact that such transitions can only occur if there is
at least one customer present at the 1Eh server.

Since the rate of transition out of any state is equal
to the rate of transition into that state at equilibrium,
the steady state probabilities must all satisfy the follow-

ing equation:

L
%gg e(nj) uy P(no'nl""'nL) -

Mt“

L
> e(nJ) Uy Py P(no.nl.....n1+1.....nJ-1.....nL) B-1

1=0 J=0

o

cases in which 0%n .4N and the n, sum to N. However, to sim-
plify the formal manipulations gf this section it is assumed
that this function is defined for sll values of nJ.

221

A separation of variables technique can be used to obtain

values of P(n n which stalsfy B-1. Assume that

1.ooo.nL‘

L
P(n ong,...on) = & T (%) % B-2

where G 18 a constant that will be specified later and the
Xk are functions of the network parameters. To determine

the Xk note first that

X, 4 K n
P(no.nl.....n1+1.....nj-1.....nL) = _23 & kLL (xk) s B=-3
Substituting in B-1 from B-2 and B-3,
& I
1 n
e(n,) v, (X,) 'k =
T 3/ %3 G x=0 %k
L L X L
i1 n
S > eln,) u, p, < = (X,)k
e e B G g JJO Xy
1 L n
Dividing through by - | | (xk) k and moving the results
k=0

to one side,

222

L L L
%gg e(nj) uy - %;g %;% e(nJ) Uy Py (xi/XJ) = 0

L L
Hence, e(n,) {u - u, p (k. /%) = 0 B-4
Lo J [J E;g 1 713 1) }

If all the customers are present at the kr’-Q server,
then e(nk) will be equal to one and all the other e(nJ)
will be equal to zero. In order to satisfy equation B-4

in this case, it is thus necessary that

I,
B 12:0 uy pyy (Xy/X) = 0 B-5

Since it 1is possible for all the customers to be present at
any server in the network, equation B-5 must be satisfied
for k=0,1,...,L . In addition, it is obvious that equation
B-4 will be satisfied for any state (no.nl.....nL) ir
equation B-5 1s satisfied for k=0,1,...,L . Thus equation
B-5 represents a necessary and sufficient set of conditions
for determining the XJ‘

It 18 possible to rewrite equation B=5 in a simpler
form. First define

x fOI‘ k=0'1.000.L B-6

5 i
Equation B-5 then becomes

L
yk = Z yl plk
i=0
Since this equality must hold for k=0,1,...,L , the vector

¥ = (yo,yl.....yL) must satisfy the eigenvector equation

223

y =y F B-7
where P 1s the matrix (le) .

Thus, assuming a real and non-negative solution to
equation B-7 can be found, it follows from equations B-6
and B-2 that the steady state distribution of customers in
the network is
P(no.nl.....nL) = é ELF'(yk/uk)nk B-8

=(

Note that no explicit reference has been made thus far
to the number of customers in the network (i.e., N). In
fact the only part of the solution which depends on N is the
constant G. To express this dependency G will be written
as G(N) for the remainder of this discussion.

The constant G(N) is selected so that the sum of all
fhe P(no.nl.....nL) will be equ:l to one. Since any value
of P(no.nl.....nL) for which EE: nJ = N represents a

J=0
possible state of the system, it follows that

L
n
G(N) = E kL% (yk/uk) k B-9

L
E nk=N
k=0

The derivation of equations B-8 and B~9 is essentially
a restatement of Gordon and Newell's argument. However the
network description was slightly simplified by the assumption
that the processing rate of each server is independent of

the number of customers present at that server. The next

224

section demonstrates the way in which the steady state distri-
bution can be obtained when such dependencles are assumed to

be present.

Queue Dependent Servers

The network description 1s the same as in the previous
section except that the processing rate of each server is no
longer a constant but 1s instead a function of the number of
customers present at the server. That is, 1f there are k
customers present at the JEQ server, then the time until the
next service completion 1s assumed to be an exponentially

distributed random variable with mean ;—TE%TE— .

In the previous section 1t was in effect assumed that
aJ(k)-l for j=0,1,...,L and k=1,2,...,N . It will now be
assumed that the aJ are arbitrary functions subject only to
the constraint that aJ(k)>0 for j=0,1,...,L and k=1,2,...,

N . The equation which corresponds to B-1 18 then

L
J-Zo e(nj) aj(nj) uj P(no.nl....,nL) =

Mr

L
S e(n,) a, (ny+1) wyp, P(ngongeeeesny+l,.coony- lyeeuong)

1=0 =0
Jrtl
L
+ Eio e(nl) al(nl) U, Pyy P(no.nl,...,ni,...,nL) B-10
225

o

A steady state distribution which satisfies equation
B-=10 can also be obtained by a separation of variables tech-
nique, but in order to do so 1t 1s first necessary to make a

variable transformation. Begin by defining

AJ(O) = 1
- B-11
AJ(n) = aj(k) for n=1,2,...,N
k=1
Then define
L
QAUn_ngeeeen) = P(n_sngee..0np) }:g AJ(nJ)
Note that
QOB iR o oo o g)
P(no.nl.....nL) = g = L B=12
1T Aj(nj)
3=0

Also

P(no,nl,--.,n1+1,...,nJ-l....,nL)

a,(n,)
Ei_(?z-.ﬁ) Q(noonlo oo 'onl'.'l. cee 'nj-l' P .nL)

=T L
]:E AJ(nJ)

B=13

226

Substituting in B-10 from B-12 and B-13,

L

jé—a e(n,y) aJ(nJ) ug QUn engeeeaeng) =
L
}:E Ayluy)

L L
?;g %;g e(nJ) aJ(nJ) WP,y g Q(no.nl.....n1+1.....nj~1.....nL)

ILI (u,)
A, (u
fug 14
B-14
L
Multiplying through by I | AJ(uJ) reduces equation
3=0

B-14 to the same form as equation B-1 except that all the
P's are replaced by Q's and e(nJ) is replaced everywhere by
e(nj)-aJ(nJ). It is thus possible to proceed exactly as in

the case of equation B-1 and derive
L L
> e(n) ay(ny) fuy - 2, Ty Py 4 (Xl/xj) = 0

J=0 1=0

Since aJ(N)>0 by hypothesis, it is thus possible to deduce

L
v, - 1=Zou1 Py (X/Xy) = 0

227

for k=0,1,...,L by the same argument that was used to deduce
B-5 from B-4. It then follows that

‘Ir“r(fae)™
y.,./u k
LB e -

1
Q(nolnlt R ., 'nL) = G(N)

where J = (yo-yl-----yL)
is the real and non-negative solution of the eignevector

equation y=y-p ,

I«

Applying equation B-12, it then follows that

L (y./u)"k
P(nO'nl"”'nL) = - - -,T _£_k . B-15

GIN) im0 My

The normalizing constant G(N) 1s clearly determined by the

L (y,/u.)'k
equation G(N) = _;_ k| |0 _‘5/{7 B-16
L =

En-N
ke k

Equations B-15 and B-16 represent a minor generalization
of the results obtalned by Gordon and Newell. Jackson's
results, on the other hand, are considerably more general and

include these equations as a speclal case.

228

10

11

12

BIBLIOGRAPHY

Abate, J. and Dubner, d. Optimizing the performance of
a drum-like storage. IEcZE Trans. oun Comp., C-18, 11
(Nov. 1969), 992-997.

Abate, J., Dubner, H. and Welnberg, S.B. Queueing analy-
sis of the IBY1 2314 disk storage facility. JACM, 15, 4
(Oct. 1968), 577-589.

Adiri, I. A time-sharing queue with preemptive-resume
priority discipline. Israel J. of Tech., 6, 5 (Nov.
1968),277-282,

Adiri, I. Computer time-sharing queues with priorities.
JACM, 16, 4 (Oct. 1969), 631-645.

Adiri, I. and Avi-Itzhak, B. A time-sharing queue with
a finite number of customers. JACM, 16, 2 (Apr. 1969),

313-323.

Arden, B. and Boettner, D. Measurement and performance
of a multiprogramming system. ACYM Symposium on Operating
Systems Frinciples, ACM, N.Y., Oct. 1969, 130-146,.

Arora, S.R. and Gallo, A. The optimal organization of
multiprogrammed multi-level memory. ACM-SIGOPS Workshop
on Syztem Ferformance Evaluation, ACM, N.Y., Apr. 1971,
104-141,

Baskett, F. Mathematical Models of Multiprogrammed
Computer Systems. Ph.D. Thesis, Univ. of Texas, Austin,
Texas, Dec. 1970.

Boudreau P.E. and Kac, M. Analysis of a baslic queuing
problem arising in computer systems. IBM J. Res. and
Development, 5, 2 (Apr. 1961), 132-140.

Bowdon, E.K., Sr. Priority assignment in a network of
computers. Digest IEEE 1969 Comp. Group Conf., IEEE

Burke, F.J. The output of a queueing system. Oper.
Res., 4, 6 (Dec. 1956), 699-70k4.

Buzen, J. Analysis of system bottlenecks using a queue-
ing network model. ACM-SIGOPS wWorkshop on System FPer-
formance iLvaluation, ACM, N.Y., Apr. 1971, 82-103.

229

13

14

15

16

i

18

19

20

21

22

23

24

25

Chang, W. A queuing model for a simple case of time

Chang, W. Queues with feedback for time-sharing computer
system analysis. Oper. Res., 16, 3 (June 1968), 613-627.

Chang, W. Single server queuing processes in computing
systems. IBM Sys. J., 9, 1 (Jan. 1970), 36-71.

Chang W. and Wong, D.J. Analysis of real time multi-
programming. JACM, 12, 4 (Oct. 1965), 581-588.

Coffman E.G. Stochastic Models of Multiple and Tinme-
Shared Computer Operations. Ph.D. Thesis, Dept. of
Engineering, Univ. of Calif., Los Angeles, Cal., June
1966. (Available from National Technical Information
Service, Springfield, Va., as AD 636 976.)

Coffman, E.G. Studying multiprogramming through the use
of queueing theory. Datamation, 13, 6 (June 1967), 47-54.

Coffman, E.G. An analysis of computer operations under
running time priority disciplines. In Klerer, M. and
Reinfelds, J. (ed). Interactive Systems for Experimental
Applied Mathematics, Academic Press, N.Y., 1968, 257-270.

Coffman, E.G. Analysis of two time-sharing algorithms
dﬁsigned for limited swapping. JACM, 15, 3 (July 1968),
341-353.

Coffman, E.G. Analysis of a drum input/output queue
under scheduled operation in a paged computer system.
JACM, 16, 1 (Jan. 1969), 73-90.

Coffman, E.G. and Kleinrock, L. Feedback queueing models
fog time-shared systems. JACM, 15, 4 (Oct. 1968), 549~
576. ‘

Coffman, E.G. and Krishnamoorthi, B. PFPreliminary Analy-
sis of Time-Shared Computer Operation. Doc. SP-1719,
Sys. Dev. Corp., Santa “Yonica, Cal., 1964,

Coffman, E.G. and Muntz, R.R. "odels of pure time-shar-
ing disciplines for resource allocation. Proc. ACM 1969
Nat. Conf., ACM Publ. No. P=69, 217-228.

Coffman, E.G., MMuntz, R.R., and Trotter, H. Waliting
time distributions for processor sharing systems. JACM,
17, 1 (Jan. 1970), 123-130.

230

A

28

29

30

FL

32

33

34

35

36

37

38

Cox, D.R. and Smith, W.L. Queues. Methuen and Co.,
London, 1961.

Delbrouck, L.E.N, A feedback queveing system with batch
arrivals, bulk service, and queue-dependent service time.
JAC+, 17, 2 (Apr. 1970), 314-323.

Denning, F.J. wtfects of scheduling on flle memory
operations. Proc. AFIPS 1967 sJcC, Vol. 30, Thompson
Books, ‘iash., D.C., 9=21.

Denning, FP.J. The working set model for program be-
havior. CACM, 11, 5 (vay 1968), 323=333.

Denning, P.J. Thrashing: its causes and prevention.
Proc. AFIPS 1968 FJCC, Vol. 33, Thompson Books, Wash.,
D.c'. 915-922-

Estrin, G. and Kleinrock, L. easures, models and meas-
urements for time-shared computer utilities. Proc. ACM
1967 Nat. Conf., Thompson Books, wash., D.C., 85=96.

Feller, W. An Introduction to Probability Theory and
its Applications, Vol. 1, Third ed., Wiley and Sons,
N'Y.' 1968.

Fenichel, R.R. and Grossman, A.J. An analytic model of
multiprogrammed computing. Froc. AFIFS 1969 sJCC,
VOl. 34' AFIPS PreSS. Wontvale. N.Jl. ?17-7210

Fife, D.W. An optimization model for time-sharing.
Proc. AFIPS 1966 sSJCC, Vol. 30, Thompson Books,
‘dash. ’ Dn C' ’ 97-101"'

Fife, D.W. and Rosenberg, R.S. Queueing in a memory-
shared computer. Froc. ACM 1964 Nat. Conf., Thompson
BOOkS. waSh.. D.Cl' Hl-l - Hl-lao

Fife, D.W. and Smith, J.L. Transmissilon capacity of
disk storage systems with concurrent arm positioning.
IEEE Trans. on Elect. Comp., EC-14, 4 (Aug. 1965),
575-582.

Finch, F.D. Cyclic queues with feedback. J. Roy. Stat.
Soc., Ser. B, 21, 1 (1959), 153-157.

Finch, P.D. The output process of the queueing system
W/G/lo i- ROE. stat- SOC., Sero B' 21. 2 (1959)' 375-
380.

231

39

Lo

L1

L2

43

Ll

45

Lé

47

48

49

50

51

52

Frank, H. Analysis and optimization of disk storage
%evlges for time-sharing. JACM, 16, 4 (Oct. 1969),
02-620.

Gaver, D.P. Probability models for multiprogramming
computer systems. JACM, 14, 3 (July 1967), 423-438,

Gordon, W.J. and Newell, G.F. Closed queuing systems
wiﬁh gxponentlal servers. QOper. Res., 15, 2 (Apr. 1967),
254265,

Gordon, W.J. and Newell, G.F. Cyclic queuing systems
with restricted queue lengths. Oper. Res., 15, 2

Gordon, W.J. and Newell, G.F. Acknowledgment., Oper.
Res., 16, 6 (Dec. 1967), 1182.

Greenberger, M. The priority problem and computer time-
sharing. Management Science, 12, 11 (July 1966), 888-906

Harrison, G. Message buffering in a computer switching
center. I1EEE Trans. on Communication and Electronics,
82' (Septo 1963)' 532-5 e

Hunt, G.C. Sequentlal arrays of walting lines. OQOper.
Res., 4, 6 (Dec. 1956), 674-683.

Jackson, J.R. DNetworks of walting lines. OQOper. Res.,
5' 4 (Augo 1957)' 518-5210

Jackson, J.R. Jobshop-like queueing systems. Manage-
ment Science, 10, 1 (Oct. 1963), 131-142.

Jackson, R.RE.F. Queueing processes with phase-ty§e
service. J. Roy. Stat. Soc., Ser. B, 18, 1 (1956),
129-132.

Kendall, D.G. Stochastlc processes occuring in the
theory of queues and their analysis by the method of
the imbedded Markov chain. Ann. Math. Stat., 24 (1953),

338-354.

Kleinrock, L. Analysis of a time-shared processor.
Naval Res. Logistics Quart., 11, 1 (Mar. 1964), 59-73.

Kleinrock, L. Sequential processing machines (S.P.M.)
analyzed with a queulng theory model. JACM, 13, 2

232

53

54

58

56

4

58

59

60

61

62

63

64

65

66

nleinrock, L. Time-shared systems: a theoretical treat-
ment. JACM, 14, 2 (Apr. 1967), 242-261.

Kleinrock, L. Certalin analytic results for time-
sharing processors. Froc. IFIF 1968 Cong., Vol. 2,
“orth-Holland Publ. Co., Amsterdam, 835-545

Kleinrock, L. On swap time in time-shared systems.
Digest IEEE 1969 Comp. Group Conf., IEEE Publ. No.
69C=30-~C, 37-41,

Kleinrock, L. A contlinuum of time-sharing scheduling
algorithms. Proc. AFIFS 1970 SJcCC, Vol. 36, AFIPS
Press, 'lontvale, N.J., 453-458,

Kleinrock, L. and Coffman, E.G. Distributlion of attained
service times in time-shared systems. J. Comp. and Sys.
Sciences, 1, 3 (Oct. 1967), 287-298.

Koenigsberg, £. Cyclic queues. Operational Res. Quart.,
9, 1 ((1958), 22-35.

Krishnamoorthi, B. The stationary behavior of a time-
sharing system under Polsson assumptions. OFSEARCH-
J. Oper. Res. Soc. of India, 3, 3 (1966), 101-117.

Krishnamoorthi, B. and Wood, R.C. Time-=shared computer
operations with both interarrival and service times
exponential. JACM, 13, 3 (July 1966), 317-338.

McKinney, J.M. A survey of analytic time-sharing models.
Computing Surveys, 1, 2 (June 1969), 105-116.

Moore, C.G. Network Models for Large-Scale Time-Sharing
Systems. Ph.D. Thesis, Univ. of Ylch., Ann Arbor, %“ich.,
April 1971.

O0'Brien, G.G. The solution of some queulng problems.
J. Soc. Indust. Applied Math., 2, 3 (Sept. 1954), 133-142.

Patel, MN.R. A Mathematical Analysis of Computer Time-
Sharing Systems. Masters Thesls, Dept. of E.k., Mass.
Inst. of Tech.,, Cambridge, ‘ass., June 1964,

Phipps, T.E., Jr. *achine repalr as a priority walting-
line problem. Oper. Res., 4, 1 (Feb. 1956), 76-85.

Rasch, F.J. A queueing theory study of round-robin

scheduling of time-shared computer systems. JACM, 17,
1 (Jan. 1970), 131-145,

233

67

68

69

70

71

72

73

4

72

76

o

78

79

Reich, E. Walting times when gqueues are in tandem.
Ann. Math. Stat., 28, 3 (1957), 768-773.

Sakata, M., Noguchi, S. and Oizumi, J. Analysis of a
processor shared queueing model for timesharing systems.
Proc. of Second Hawall Int. Conf. on Sys. Science, Univ.
of Hawall, Honolulu, 1969, 625-628.

Scherr, A.L. alysis of Time-Shared Computer Sys-
tems. Fh.D. Thesis. Dept. of E. E., Mass. Inst. of Tech.,
Cambridge, Mass., June 1965. (Avallable from the MIT
Press, Cambridge, Mass.)

Schrage, L.E. The queue %/G/1 with feedback to lower

Eriority queues. Management Science, 13,7 (Mar. 1967),
66-4740

Sehrage, L.E. Analysis and optimization of a queueing
model of a real time computer control system. IEEE
Trans. on Comp., C-18, 11 (Nov. 1969), 997-1003,

Schrage, L.E. and Miller, L.W. The queue M/G/1 with the
shortest remaining processing time diseipline. Oper.

Seaman, P.H., Lind, R.A. and Wilson, T.L. An analysis
of auxillary-storage activity. IBM Sys. J., 5, 3
(1966), 158-170.

Sharma, R.L. Analysis of a scheme for information
organization and retrieval from a disk file, Proc.
IFIP 1968 Cong., Vol. 2, North-Holland Publ. Co.,
Amsterdam, 853-859.

Shemer, J.E. Some mathematical conslderations of time-
sgaring scheduling algorithms. JACM, 14, 4 (Apr. 1967),
262=272.

Smith, J.L. An analysis of time-sharing computer systems
using Markov models. Proec. AFIPS 1966 SJCC, Vol. 28,
Thompson Books, Wash., “D.C., 87-95.

Smith, J.L. Multiprogramming under a page on demand
strategy. CACM, 10, 10 (Oet. 1967), 636=-646.

Takacs, L. Introduction to the Theory of Queues.
Oxford Univ. Press, N.Y., 1962.

Tanaka, H. An analysis of on-line system using parallel
ecyclic queues. Denshl Tsushin Gakkal Rombunshi (J. of
the Assoc. of Electronics and Cormunication of JapanTT

234

80

81

82

83

84

85

53-C, 10 (Oct. 1970), 756-764, (Japanese).

Wallace, V.L. and dason, D.L. Degree of multiprogram-
ming in page-on~demand systems. CACM, 12, 6 (June
1969), 305-318.

Wallace, V.L. and Rosenberg, R.S. Markovian models and
numerical analysis of computer system behavior. Froc.
AFIES 1966 SJCC, Vol. 28, Thompson Books, wash., D.C.,
141-148.,

Walter, £.3. and Wallace, V.L. Further analysis of a
computing center environwent. CACM, 10, 5 (May 1967),
2EE2T2

Weilngarten, A. Storage requirements for a message
switching conmputer. IEEE Trans. on Comrmunications
Sys., CS-12, 2 (June 1964), 191-195,

Weingarten, A. The ZEschenbach drum scheme. CACM, 9,
7 (July 1G66), 509=-512.

Weingarten, A. The ana%ytic design of real-time disk
systems. Proc. IFIP 1968 Cong., Vol. 2, North-Holland
Publ. Co., Amsterdam, §20-Bees '

235

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classified)
1. ORIGINATING ACTIVITY ((‘Ol’pOrBIe author) 28, REFORT SECURITY CLASSIFICATION
Harvard University UNCLASSIFIED
Division of Engineering and Applied Physics R Wl N/A
Cambridge, Massachusetts 02138

3. REPORT TITLE

QUEUEING NETWORK MODELS OF MULTIPROGRAMMING

4. CESCRIPTIVE NOTES (Type of report and inclusive dates)

None

5 AUTHORIS) (First name, middle initial, last name)

Jeffrey P. Buzen

6. REPORTY OATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS

August 1971 248 85

8a. CONTRACT OR GRANT NO

F19628-70-C-0217
b. PROJECT NO. ESD-TR-7I"'345

98. ORIGINATOR'S REPORT NUMBERI(S)

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

d.

10. OISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
THESIS Deputy for Command and Mcncgement Systems
Div. of Eng. and Applied Physics Hq Electronic Systems Division (AFSC)
Harvard Unlversity L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRACT

A model is developed which represents the behavior of multi-
programmed computer systems in terms of a network of interdependent
queues. Thils model, which is known as the central server model of
multiprogramming, is first analyzed mathematically and then applled
to three problems in operating system design. These are: the optimal
cholce of buffer size for tape-like devices; the optimal allocation
of processing requests among a set of functionally equivalent
peripheral processors such as disks and drums; the optimal selection
of the degree of multiprogramming in demand pagling systems.

A series of computational algorithms are developed to supplement
the analytic work. These algorithms can be used to obtain the
marginal distributions and expected queue lengths for a large class
of queueilng network models.

DD f2.1473 UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification

14. EraRt A o LINK A LINK B LINK C
ROLE wWT ROLE wWT ROLE wWT
Computers
Multiprogramming
Operating System Design
Optimization of Computer Systems
Performance Evaluation
Queuelng
Queueing Networks
UNCLASSIFIED

Security Classification

